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Abstract

Understanding how climate change impacts global economic inequality is critical to the de-
sign of equitable and politically viable climate policy. Yet where evidence of this relationship
is available, analysis is generally limited to coarse comparisons of country-level aggregates,
remaining agnostic to disparities across individuals within those countries. This paper ad-
vances this literature using newly available distributional income data to incorporate within-
country dimensions of this ‘climate inequality’. First, I document new evidence that tempera-
ture shocks persistently exacerbate inequalities within countries by disproportionately reduc-
ing income growth among the lowest income-earners, especially in warm-climate economies.
Second, I use these empirical results to compare the historically observed distribution of global
income to its counterfactual distribution had global warming been stabilized at 1980 levels. I
estimate that systematic warming between 1980-2016 increased global income inequality by
4.0% [1.6,6.6], with absolute increases in between-country and within-country inequality con-
tributing equally to this total effect. These contributions in turn correspond to proportional in-
creases in inequality of 2.6% [0.0, 5.6] within countries and 8.7% [4.9, 13.3] between countries.
To my knowledge, these distributional results constitute a novel contribution to the climate
impacts literature and altogether offer the most comprehensive evidence yet of the globally
regressive economic impact of climate change.
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“Note that the Bengal famine might have been a compensation
test victory because a lot of people gained a lot in 1943. The new
destitutes mostly died, but all we are checking is whether they
could have been compensated. I mean, what kind of
‘improvement’ is that? There is no progress trying to do welfare
economics without taking on the real problems of inequality and
poverty. This could not be done, then or now.”

Amartya Sen (Sen et al. 2020)

1 Introduction

Addressing anthropogenic climate catastrophe and narrowing economic inequalities between
and within countries are widely recognized as urgent and interrelated global priorities (United
Nations 2015; Masson-Delmotte et al. 2018; Chancel, Piketty, et al. 2022; Pande 2023). Indeed,
a robust empirical literature has consistently found that climate change disproportionately bur-
dens near-tropical, typically less developed economies on average, widening disparities between
the 180 or so countries (Ricke et al. 2018; Diffenbaugh and Burke 2019). Yet, alarmingly little
evidence exists relating climate change to inequality among the billions of people resident within
these national borders2. If these within-country impacts are also substantial and regressive, as
most environmental economists believe to be likely (Howard and Sylvan 2021), then our present
understanding of climate change is agnostic to its most important social implications: global mass
immiseration and social stratification.

Addressing this ignorance is thus critical to the design of a sufficient global response to the
climate crisis (Masson-Delmotte et al. 2018). For example, economists have long advocated for
mitigation policy centered around pricing instruments like carbon taxes or quotas which adjust
the private costs of marginal emissions to reflect their total social costs (Weitzman 1974). Classi-
cally, a pricing schedule which achieves this internalization is said to be efficient in the limited
Kaldor-Hicks sense that enough aggregate benefit is obtained as a result of the policy to offset the
aggregate losses from unmitigated emissions, regardless of how those benefits are distributed. In
recent years, demand for more intentional equity considerations have led to institutional depar-
tures from the pure utilitarianism of traditional cost-benefit analysis, allowing the least well off
to be assigned greater welfare weighting (Management and Budget 2023; Prest et al. 2024). But
even with these refinements, mitigation policy is only efficient in the welfare-preserving sense
to the extent that those disproportionately burdened by the marginal emission and the incidence
of the pricing instrument itself are sufficiently compensated (Sen et al. 2020). Thus, any efficient
and equitable climate policy requires actionable evidence identifying the distribution of climate
impacts.

Consideration of within-country inequality impacts is likely to be pivotal for overcoming resis-
tance to ambitious climate policy proposals. The historical unpopularity of carbon pricing mecha-
nisms are well-documented and often explicitly motivated by distributional concerns, as dramat-
ically demonstrated by the 2018 Gilets Jaunes protests opposing impending fuel tax increases. A
growing body of social science research corroborates a more general positive association between
public support for national climate policies and their perceived progressivity (Maestre-Andrés et

2Within-country income inequality now accounts for almost 70% of total global income inequality as measured by the
entropy-based Theil index, an increase from just over 40% in 1980. (Chancel, Piketty, et al. 2022)
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al. 2019) or their bundling with pro-poor social and structural policies such as a jobs guarantee or
affordable housing reform (Bergquist et al. 2020). Dechezleprêtre et al. (2025) document exper-
imental evidence that these equity considerations are much more salient than aggregate climate
impacts and Furceri et al. (2023) suggest that successfully implemented carbon pricing policies
are only politically costly in periods of heightened inequality.

Despite these first-order policy implications, the literature relating climate change to economic
inequality within countries remains sparse mainly due to the historical unavailability of reliable
and comparable distributional data (Atkinson 2001). The far more active literature on between-
country climate inequality is made possible by the regular measurement of country-level aggre-
gates such as gross domestic production which is rigorously standardized by the System of Na-
tional Accounts specifically to facilitate international and intertemporal comparisons (United Na-
tions 2010). By one account, the greater academic, commercial, and political interest in aggregate
production has crowded out investment in research infrastructure to support the construction of
distributional welfare measures (Jorgenson 2018). While secondary inequality datasets provid-
ing estimates of country-year inequality date at least as far back as Deininger and Squire (1996),
the value of these products for causal analysis and cross-country comparison is undermined by
substantial inconsistencies across input sources in spatiotemporal coverage, how inequality is op-
erationalized, and the opacity of their construction (Atkinson and Brandolini 2001; Jenkins 2015).
Nonetheless, Cevik and Jalles (2023) and Gilli et al. (2024) are early efforts using these data prod-
ucts to empirically study temperature impacts on the distribution of economic outcomes for multi-
ple countries. Other works such as Hsiang et al. (2017) , Marx (2024) , and Dasgupta et al. (2023)
make important progress by instead using rich but idiosyncratic distributional data from indi-
vidual countries to document evidence of regressive climate incidence within the United States,
France, and South Africa respectively. Warmer developing countries where aggregate climate im-
pacts are known to be greatest generally lack the capacity to produce similarly fine-grained data.

I am able to overcome these myriad empirical limitations by taking advantage of newly avail-
able income data from the 2024 update to the World Inequality Database. As described in greater
detail in Section 2, this new generation of distributional data represents a major advance in the
measurement of global inequality because its construction, modeled after the System of National
Accounts, systematically integrates information from various primary sources to capture national
income distributions more completely and transparently. The final dataset used throughout this
paper takes the form of a well-balanced annual panel of country-quantile pre-tax income since
1980 and critically spans an expanded set of countries that now extends to most developing coun-
tries. The present analysis of within-country climate impacts thus benefits from the unprecedented
granularity and near-global extent of this data, overcoming the steep tradeoff between subnational
resolution and global generalizability that has constrained existing approaches. As a result, I am
able to document new evidence that identified temperature shocks impose large, regressive, and
persistent effects on income distributions, especially in warmer geographies. I then incorporate
these empirical results into a counterfactual analysis which allows me to estimate the regressive
effect of climate change on global income inequality decomposed into its between-country and
within-country components for the first time.

My empirical approach begins with a brief discussion of data in Section 2.3, where I describe
how I construct temperature shocks to address recent critiques that traditional constructions fail to
satisfy necessary conditions for validity as an explanatory variable. Section 3 describes how I use
the method of local projections to estimate “cumulative temperature multipliers” which isolate
the dynamic cumulative effects of a unit temperature shock on income while accounting for auto-
correlation in the shock itself. In practice, this entails simply estimating a series of single-equation
regressions for every income quantile and projection period of interest then adapting recent econo-
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metric innovations to make inferences about the persistence of this effect (described in more detail
in ??.). I argue this intuitive semi-parametric approach is particularly well-suited to overcoming
important limitations in the existing climate impacts literature. Empirical results in Section 3.2 de-
pict how the expected impacts of transitory 1◦C temperature shocks vary across income groups,
how these income gradients in turn vary across countries, and how these effects accumulate and
dissipate over time. More specifically, I report evidence that a pulse of temperature has substantial
and persistent impacts on distributions of national income which are particularly pronounced and
regressive in warmer countries. For the bottom decile in a representative 26◦ country, the average
effect of a unit temperature shock is a 7% reduction in cumulative effect over the ensuing three
years; this compares to a smaller loss of 2.2% for the median adult in the same country and a 3.0%
gain for the bottom decile in a representative 10circ country.

Section 4 summarizes an analysis comparing the observed evolution of the global distribution
of income between and within countries to a counterfactual in which global warming was held
fixed at 1980 levels. This entails applying bootstrapped estimates of the cumulative temperature
multipliers to historical income and weather data to construct a range of plausible and compound-
ing outcomes absent systematic warming for each year from 1980 to 2016. My results imply that
systematic warming over these 37 years has unambiguously exacerbated total global inequality,
both between and within countries. This effect mainly stems from foregone income growth for the
poorest 20% of global income-earners. For the lowest positive income-earning global percentile
in our data, the analysis implies that incomes today would be 29% higher than observed had the
climate been stable over this period. The evidence is also consistent with the standard finding in
the literature on aggregate impacts that climate change is extremely likely to have reduced total
global income over this period. I find that climate change over this period increased total global
inequality by 4.0% [1.6, 6.6] as measured by the mean logarithmic deviation index with increases
to within-country and between-country inequality contributing essentially equally to this total
effect. As within-country inequality now comprises a dominant share of total inequality, these
represent proportional increases of 2.6% [0.0, 5.6] and 8.7% [4.9, 13.3] respectively. To the best of
my knowledge, these estimates represent a novel contribution to the vast climate impacts litera-
ture. Section 5 concludes.

1.1 Related literature

Spurred by methodological advances, accessibility of computing power, and political urgency,
the past decade has seen a proliferation of economic research dedicated to estimating the social
impacts of climate change. To contextualize the relative sparsity of within-country distributional
impact studies in climate economics, it is instructive to familiarize the reader with the subfield’s
taxonomy of empirical designs into complementary “top-down” and “bottom-up” approaches
each premised on an underlying utilitarian cost-benefit logic.

Top-down approaches restrict attention to a widely available social outcome of interest. This
outcome is taken as a comprehensive enough proxy for social welfare that climatically attributable
impacts to the stock of this outcome may represent the socially relevant climate “damage”. The
pioneering works in this category include Dell et al. (2012) and Burke, Hsiang, et al. (2015), which
relate annual observations of country-level temperature to GDP growth. Empirical designs in this
category commonly take the form fixed effects regression models run on country-year panels. The
advantage of the former approach is in its convenience and interpretability: the wide availability
of cross-country economic aggregates such as those provided by national accounts substantially
simplifies the task of calculating global climate impacts.

Alternatively, bottom-up approaches consider impacts to distinct “sectors” of an economy;
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mortality (Carleton, Jina, et al. 2022), energy consumption (Rode et al. 2021), and labor (Graff
Zivin and Neidell 2014) are common areas of focus, for example. Results using this approach
can be presented as partial costs or combined with other sectoral damages in an integrated model
which accounts for their interdependencies. The benefit of this approach is in its ability to account
for disaggregated and non-market impacts to which single-dimensional aggregates are largely
indifferent.

The simplicity of the top-down approach and comprehesiveness of the bottom-up approach
pose a critical tradeoff between geographic disaggregation and global coverage. As perhaps the
most prominent existing work directly concerned with characterizing global ‘climate inequality’,
Diffenbaugh and Burke (2019) estimates that the ratio between the top and bottom deciles of the
global income distribution was 25% larger in 2010 than it would have been had anthropogenic
climate forcings been constrained to 1960 levels, all else held equal. However, this quantity is cal-
culated by assigning all individuals their country’s mean GDP and crudely defining global deciles
accordingly, an unavoidable restriction when limited to 160 or so distinct economic units. The
authors remark that “documenting the impact of global warming on within-country inequality
remains an important challenge.”

Hsiang et al. (2017) is a particularly impressive example of a study which makes the much
less common opposite compromise in this tradeoff. Integrating fine-scaled agricultural, crime,
energy, mortality, and labor data, the authors determine that climate risks in the continental United
States are disproportionately borne by counties in the US South and Midwest, regions generally
already poorer than their coastal counterparts; climate change then is likely to imply worsening
inequality within the United States. But to make more generalizable claims about the implications
of global warming for global inequality, analyses must extend to settings which lack comparably
high-quality and granular data. Elsewhere, Marx (2024) uses rich tax data from France to infer
that years with marginally more days above 30◦C are associated with wider income disparities
between the richest and poorest cantons (administrative units described as roughly equivalent to
10 municipalities). Dasgupta et al. (2023) uses data from perhaps the most unequal country in
the world to project a 3-6 Gini point increase in South Africa’s income distribution by 2100 under
a moderate warming scenario.

The distributional focus of this paper complements a much more active area of research mea-
suring unequal impacts across countries. Like Diffenbaugh and Burke (2019), a subset of these
studies explore the implications of this type of inequality directly, for example by highlighting
the inverse relationship between country-level contributions to global greenhouse gas emissions
and exposure to their social consequences (Chancel and Piketty 2015; Ricke et al. 2018; Kotz et
al. 2024). There is by now general agreement that non-linearities in the response of aggregate
variables to marginal warming concentrate damages and risk in relatively warm and poor coun-
tries which have contributed proportionally little to anthropogenic warming (Howard and Sylvan
2021). However, estimated magnitudes of these impacts are notoriously divergent, largely because
of unsettled disagreement over the persistence of these non-linear effects (Newell et al. 2021). We
draw from recent work by Nath et al. (2024) and Bilal and Känzig (2024) which use less restrictive
time series methods to circumvent these statistical bugbears.

Similar non-linearities emerge at the micro level across a range of outcomes as varied as la-
bor supply (Graff Zivin and Neidell 2014), agricultural yields (Schlenker and Roberts 2009), and
standardized test performance (Park et al. 2020). Carleton and Hsiang (2016) overviews the pro-
liferation of multidisciplinary studies in this category whose results describe patterns of setting-
specific inequality suggestive of a broader micro-level environmental inequality similar to those
observed in the aggregate. The present study bridges this micro evidence with the aforementioned
macro evidence on inequalities between countries, estimating distributional responses consistent
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with the general features of both categories of impacts. We also document evidence of negative
impacts to an elite minority, which I have not seen examined in existing work.

The literature on climate impacts on economic inequality within countries has remained com-
paratively sparse in large part due to an absence of adequate research infrastructure. Estima-
tion of distributional equivalents of the aggregate damage functions standard in the literature
requires data comparable in credibility and coverage to domestic production data whose construc-
tion across countries follows rigorous standards set forth by the international System of National
Accounts (United Nations 2010). Historically, distributional measurement of welfare has lacked
and arguably been crowded out by the wider interest and investment in measuring aggregate pro-
duction (Jorgenson 2018). While secondary inequality data products compiling country-year in-
equality variables date at least as far back as Deininger and Squire (1996), the validity of these data
products for cross-country causal analysis is limited by inconsistencies across primary sources in
construction and availability (Atkinson and Brandolini 2001). A recent empirical evaluation of the
most widely used of these datasets concluded they are “not sufficiently credible” (Jenkins 2015).
In the absence of more credible global inequality measures, Cevik and Jalles (2023) and Gilli et al.
(2024) estimate the model of Burke, Hsiang, et al. (2015) replacing their GDP growth outcome
variable with the inequality variables provided in these early-generation products.

The research programs of Thomas Piketty, Emmanuel Saez, and their co-authors since the turn
of the century are widely credited with revitalizing public and academic interest in the measure-
ment of within-country inequality. Beginning with work tracing the long-run evolution of income
and wealth inequality in France (Piketty 2003) and the United States (Piketty and Saez 2003), their
mobilization of extensive tax returns data has enabled credible measurement of top incomes over
long time horizons, stimulating new programs of research and equipping the general public with
new political language around which to mobilize (Jones 2015). This paper takes advantage of the
cross-country research apparatus that has rapidly developed and been made accessible in recent
years with the intention of maturing the economic analysis of climate change in a similar manner.
Palagi et al. (2022) is the only other climate-economic study I could locate which makes use of

the same “ accounts” (The World Inequality Lab 2024) used in this study. The authors find that ex-
treme precipitation negatively impacts low-income individuals much more severely in countries
more dependent on agriculture.

Finally, I locate this paper in the context of a growing demand for distributional considerations
in economic analyses of climate change and the design of climate policy. For example, Chancel,
Bothe, et al. (2023) estimates that within-country inequality of carbon emissions have recently
exceeded the equivalent “carbon inequality” between countries and advocates for targeted car-
bon taxation programs based on individual footprints to more efficiently internalize the climate
change externality. The modern SCC framework accommodates equity considerations by con-
cavifying the underlying utility function so that the welfare weights assigned to individuals are
inversely related to their relative levels of consumption; a logarithmic specification is commonly
chosen, for example. Variations of this more progressive utilitarianism have been institutionalized
to some degree in a handful of countries including recently in the United States (Management and
Budget 2023). Theoretically, the way equity weighting is implemented should result in substan-
tially higher SCC estimates depending on the extent to which the distributive effect of climate
change is modeled as regressive. This paper provides the first comprehensive estimate of the
global regressivity of climate change at subnational resolution.
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2 Data

2.1 Distributional income data

We make use of the recently published grouped income series from the World Inequality
Database (The World Inequality Lab 2024). Its predecessor, the World Top Income Database
launched in 2011, drew from comprehensive tax records from over 30 mostly Western countries to
capture the distribution of income among their top income-earners with unprecedented precision.
A critical innovation used to develop the new product is the systematic integration of this tax data
with national accounts and household survey data in order to impute the full income distribution
within those countries (Piketty, Saez, and Zucman 2019) in a manner patterned after the System of
National Accounts (United Nations 2010). The newest generation of WID data extends coverage
within those countries—now claiming to capture “100% of income” in the United States (Piketty,
Saez, and Zucman 2018)—and to countries with relatively limited available data. By 2019, histor-
ical data for over 120 countries had been incorporated into the database. As of this writing, their
equal-split adult pre-tax income series was available for 215 countries and territories collectively
representing almost the entire global population with distributional data imputed every year since
1980. All income estimates are converted to 2023 US dollars using the provided PPP-adjusted ex-
change rates. Accompanying metadata scores the availability and reliability of each category of
input source by country, unsurprisingly indicating that the input mix of these sources varies sub-
stantially by country with less developed countries being more reliant on household surveys and
wealthier countries on tax records.

Notably for the percentile-level panels, the income data exhibits substantial bottom-coding
with almost every country-year reporting exactly zero income for at least the bottom four per-
centiles of the pre-tax income distribution. Even if an accurate measure of adult unemployment,
this evokes well-known deficiencies of income as an identifier and measure of poverty compared
to alternatives like consumption expenditures (Meyer and Sullivan 2003). For example, while the
unemployed subpopulation of a given economy may well be composed of its most impoverished,
it is likely to also include unemployed individuals of all levels of precarity and social status and
does not account for security provided by communal and social safety nets. It also positively
biases estimated changes in welfare among the poor since zero incomes mechanically cannot de-
crease.

Given these inherent disadvantages of income measures as a proxy for relevant welfare, we
intentionally do not make precise claims about the poverty implications of our findings. Instead,
we consider the incomes of the bottom 10 percentiles as a group in all analyses and consider
estimated impacts for this quantile to be a conservative bound on true impacts on the very poorest
because it implicitly assumes perfect equality among its constituent population (Cowell 2011).

2.2 Historical weather data

We merge all income data with an annual country-level panel of population-weighted near-
surface air temperature data derived from the Global Meteorological Forcing Dataset for Land
Surface Modeling (GMFD), which corrects model-based biases in NCEP/NCAR reanalysis prod-
uct using observational meteorological station data (Sheffield et al. 2006). The GMFD reports his-
torical weather data for the entire global surface at 0.25-degree resolution3 for every three hours
from the start of January 1, 1948 to the end of December 31, 2015. We use the product which

3At this resolution, cells near the equator are approximately 27 km2 (17 mi2).
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reports daily averages of near-surface air temperature.
While other temperature series of similarly high resolution can provide a larger estimation

sample by beginning before 1948 or updating more recently than 2015, results reported in the
broad climate impacts literature have been generally consistent across data products. We favor
the GMFD product as it has the unique feature of being the only reference product used to bias-
correct and downscale the CMIP6 projection data series produced by the NASA Earth Exchange
Global Daily Downscaled Projections; this allows the results of the present analysis to seamlessly
integrate with future work exploring its implications under different future warming scenarios
or attribution studies which attempt to decompose estimated climate change impacts into their
anthropogenic and natural contributions, as introduced in ??.

2.3 Temperature as an explanatory variable

It has been customary in the climate impacts literature to use functions of observed weather
variables such as temperature or precipitation as explanatory variables in causal analyses. His-
torically, their use in panel settings has been justified by an intuition that annual fluctuations in
these geophysical conditions are plausibly exogenous with respect to most economic activity. This
intuition has been increasingly challenged by works such as Nath et al. (2024), which argues
that because levels of temperature do not satisfy conditions of an identified shock4 and exhibit
substantial autocorrelation, they are ill-suited for dynamic causal inference.

Addressing these concerns, I define temperature shocks τ̂it as deviations in temperature levels
relative to a climate ‘state’ variable Tit. This state variable is in turn defined as the M-period
moving average of local temperature Tit:

Tit :=
1
M

M

∑
m=1

Ti,t−m − 18 (1a)

τ̂it := Tit − Tit (1b)

This definition of the state variable Tit can be contrasted against the time-invariant state vari-
able used in Nath et al. (2024) where the climate state variable is constant for each country. I
favor this moving-average construction because the median country in my sample observes, on
average, a 0.26◦C (IQR: 0.18-0.36) increase in this state variable every 15 years as a result of global
warming trends. Additionally, this definition of the state variable has an appealing coherence
with the convention in climatology of using long-run moving averages of weather realizations
to define the slow-moving state of the climate at a fixed period. Most commonly, these “climate
normals” are defined as 30-year averages to accommodate natural variation which would occur
even in a stable climate5 and so we set M = 30 in our main analysis; Kahn et al. (2021) is another
economics study which uses the same construction.

4As outlined in the handbook chapter of Ramey (2016), a valid shock in a time series setting must i) measure unantic-
ipated movements in relevant exogenous variables, ii) be exogenous with respect to current and lagged endogenous
variables, and iii) be uncorrelated with other exogenous shocks included in the model. Temperature specified in levels
do not satisfy the first condition and the third condition is violated in commonly used non-linear specifications where
temperature enters as a polynomial.

5The most economically relevant example of this natural variability is the El Niño Southern Oscillation, an ocean-
warming phenomenon which can vary average global surface temperatures by as much as 0.4◦C across its three phase
cycles which may span 2-7 years. Other minor oscillations can span multiple decades.
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We subtract 18 in Equation (1a) so that the main effects we attribute to the temperature shock
τ correspond to an intermediate representative climate of 18◦C, roughly the 40th percentile of
average temperatures in our country-year data.

Figure 1: Country-level time series of identified temperature shocks

Points correspond to shocks observed in individual country-years. The three
colors correspond to an equal-sized binning of country-years according to their
moving-average temperature. Flexible local regression curves describe time trends
for each bin; segments with more positive values correspond to periods of greater
systematic warming. Marginal distribution plots on the right show that cooler
country-years observe greater variance in shocks and more positive values.

Figure 1 depicts the implied history of temperature shocks τ̂it constructed in this manner with
individual points corresponding to distinct country-year observations. These observations are di-
vided into three equally sized groups according to their corresponding climate states Tit; points
and local regression curves are colored accordingly. The marginal distribution plots on the right
demonstrate that colder seasonal countries experience more positive and more volatile tempera-
ture shocks than their warmer counterparts, a reflection of both greater natural weather variability
in these settings and the fact that absolute anthropogenic warming is greater in regions closer to
the Earth’s poles6.

The positive values of the curves in Figure 1 over almost the entire observation period cap-
tures the idea that systematic warming is characterized by the increased frequency and greater
magnitude of positive (hot) shocks relative to negative (cold) shocks. Intervals where the curves
are closer to 0 thus reflect relative balance in the incidence of hot and cold shocks, corresponding
to periods of relative climate stability and slower warming.

6Figure A5 provides a more direct illustration of this phenomenon for different global climate models
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2.4 Modeling the persistence of social impacts: levels vs. growth effects

Comparisons across columns in Figure 2 illustrate the conceptual distinction between a shock
which imposes transitory level effects (first column) and permanent growth effects (third column);
the middle column describes a middle ground where an effect is persistent but eventually vanish-
ing. Effects are measured in logged levels (top panels) and first logged differences (bottom), a
convenient approximation of a growth rate. Filled lines depict the evolution of the outcome vari-
able in the absence (black) and presence (red) of a unit shock which occurs in period 0. Filled areas
in orange measure the cumulative loss (or gain) in the outcome which may be attributed to the
shock.

Figure 2: Levels and growth under different persistence structures

Illustrative diagrams depicting annual levels (top row) and growth (bottom row)
of a social variable of interest. Dotted vertical lines mark the timing of a transi-
tory temperature shock. Red lines represent trajectories resulting from a transitory
temperature shock while black filled lines represent their counterfactual trajectory
had they continued their pre-shock linear trend. Filled areas in orange correspond
to the implied cumulative loss in the outcome variable (“damages”) attributable to
the shock. Columns correspond to different assumptions about how persistent the
impact of a temperature shock is on the social outcome.

Under a one-period level effect, the level of, say, GDP falls by an estimated level β̂0 in the year
of the shock but fully recovers to its pre-shock trend (black) in the next period. In this scenario, the
production lost in the year of the shock is exactly offset by an above-trend rate of growth which
exactly offsets the negative growth effect in the year of the shock. The shock has no additional
effect on future production and the area in orange represents the one-off impact from the shock.

Under the constant growth effect depicted in the rightmost panels, the same shock incurs the
same effect on the levels but this effect is permanent so that GDP in all future periods is reduced
by the same amount relative to the no-shock counterfactual. The difference between the two tra-
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jectories thus compound over time as observed by the orange area which grows linearly with
the projection horizon. The corresponding growth effect depicted in the bottom panel is entirely
transitory with no compensatory positive growth relative to trend.

The middle column describes an intermediate case where the economy requires several pe-
riods to return to its pre-shock trend. Cumulative differences attributable to the one-off shock
continue to rise over time but to a diminishing degree until eventually compensatory positive
growth exactly offsets the initial negative growth, i.e., the integral of the growth curve equals zero
in the long run.

Now consider the following two models, which we may refer to as the levels and growth
models respectively.

log Yit = βLXit + vit (2a)

∆ log Yit = βGXit + uit (2b)

For simplicity, imagine the outcome variable Yit represents a conventional economic aggregate
like GDP and Xit a perfectly identified temperature shock. In the levels model, βL represents
an estimate of the change in log GDP attributable to a unit shock. Graphically, this impact is
represented by the vertical distance between the black and red lines in the top-left plot. Since this
is an entirely static model, there is no mechansim for Xit to affect future values of Yit and so the
model assumes a perfect return to trend in all ensuing periods. In the growth plot directly below,
this is represented by a βL − 0 = βL effect in period 0, an exactly offsetting 0− βL = −βL effect on
growth in period 1, and no effect on growth in all ensuing periods. In models specified in levels,
level effects which persist for p periods can be accommodated by including p additional lags of
X in the regression. A permanent growth effect can only be accommodated with the inclusion of
infinite lags.

In the growth model, βG 6= 0 represents a permanent change in the difference between consec-
utive values of Yit. This is represented by the gap between the black pre-shock trend line and the
observed GDP series in the top-right plot staying constant at βG for all periods following the shock
and is never offset. Level effects which persist for p periods can be accommodated by including p
lags of X and finding that the sum of the p + 1 coefficients is exactly 0 so that the initial negative
growth effect is eventually offset by sufficient compensatory growth.

The differing restrictions imposed by these stylized regression models is a simplification of
perhaps the most influential unsettled question in climate economics: the persistence of climate
impacts. For example, two studies projecting the proportional loss in cumulative global produc-
tion by 2100 arrive at point estimates of -20% (Burke, Hsiang, et al. 2015) and -3.4% (Casey et al.
2023) under the same worst-case warming scenario. Methodologically, the two studies use similar
methods and data except for their choice of outcome variable.

Intermediate persistence structures where level effects are diminishingly persistent can be ac-
commodated by either model by including sufficient lags of the explanatory variables. Of course,
identifying variation is reduced with the addition of additional explanatory variables, a problem
exacerbated in specifications where shocks enter non-linearly and settings where shocks exhibit
significant autocorrelation, both general features of modern climate models using absolute tem-
perature as their explanatory variables. In addition, models specified in levels are notoriously
vulnerable to unit root concerns, further undermining credible identification.

Indeed, the appendix to Burke, Hsiang, et al. (2015) concludes that the identifying variation
which remains after lag augmentation to test for persistence “cannot reject the hypothesis that this
effect is a true growth effect nor the hypothesis that it is a temporary level effect”, rendering these
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extremely influential assumptions effectively unfalsifiable. Absent substantially improved data,
overcoming this issue requires richer data than provided by national accounts or an alternative
methodological approach relatively robust to misspecification.

3 Empirical analysis

3.1 Methods: cumulative temperature multipliers

To characterize the dynamic effects of an identified temperature shock on national income dis-
tributions, we adapt the method of local projections first introduced in Jordà (2005). As Jordà
(2023) notes, this semi-parametric method of estimating impulse response functions has found
growing appeal outside of applied macroeconomics in recent years as recent econometric litera-
ture has demonstrated its flexibility in incorporating non-linearities (Cloyne et al. 2023), its coher-
ence with the potential outcomes framework (Dube et al. 2025), and its robustness to misspecifica-
tion and non-stationarity (Montiel Olea and Plagborg-Møller 2021; Montiel Olea, Plagborg-Møller,
et al. 2024; Piger and Stockwell 2025). Berg et al. (2024) , Bilal and Känzig (2024) , and Nath et al.
(2024) are the first works I am aware of to apply this method to estimate dynamic economic re-
sponses to climate shocks, demonstrating how these features can help address the identification
issues described in Section 2.

Our application of this method to our inequality setting entails the following steps:

1. Estimating the state-dependent response of income to a unit temperature shock

2. Estimating the state-dependent response of temperature shocks to a unit temperature shock

3. Using both to estimate a state-dependent multiplier to isolate the dynamic income response
net of the shock’s effect on future shocks

4. Statistically evaluating the significance and persistence of this multiplier

5. Repeating the above steps for each income quantile of interest

We briefly describe this process below and provide additional exposition in ?? using an appli-
cation to country-level GDP data.

3.1.1 Estimating state-dependent impulse responses

We use country-year panel datasets to estimate dynamic responses to temperature for an out-
come of interest represented by the variable yit. For example, y may represent the average loga-
rithm of income of the bottom 10% of individuals in country i in year t and we may repeat the
estimation process for each income decile and use the results to infer a total effect on national
income distributions.

The method of local projections entails estimating H + 1 iterations of the following single-
equation model, corresponding to different projection horizons h ∈ {0, 1, ..., H} periods after an
identified temperature shock:

∆hyi,t+h := yi,t+h − yi,t−1

= β1hτ̂it + β2hτ̂it · Tit + λhTit + γ>h Zit + µi + ηt + ui,t+h
(3)
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In our main specification, the matrix Zit includes lagged controls {τ̂i,t−j, τ̂i,t−j · Tit, ∆yi,t−j}
p
j=1.

The inclusion of p lags of the temperature shock τ̂ is included to address potential autocorrela-
tion in the explanatory variable. Interactions of these lagged shocks with the state variable cap-
ture potential state-dependencies in these autocovariance structures motivated partially by the
finding in Figure 1 that shocks in cooler climates tend to be more positive on average and fea-
ture greater year-to-year variability. Lags of the outcome are included as a guard against trend
non-stationarity. Finally, the sets µi and ηt of fixed effects are included to absorb time-invariant
unit-specific effects and common year-specific effects. In all, this general model differs from the
state-dependent model of Nath et al. (2024) only in how temperature shocks are constructed and
in permitting the state variable to vary over time as described in Section 2.3.

For each projection horizon h, the main regression coefficients of interest attribute to a unit
temperature shock a main effect β1h representing a change in the “long difference” between y
observed h periods after the shock and y observed the period before the shock. Equivalently,
this can be interpreted as the change in y h periods after the shock relative to a counterfactual
absent the shock. In most of our results, y represents the logarithm of income for some quantile
of the national income distribution; in these cases, coefficients are interpreted as percentage-point
impacts on income.

An interaction term β2h allows the effect at each period to scale with an observation’s time-
varying expected temperature Tit, defined in Section 2.3. This ‘state dependence’ is motivated by
the standard result in the climate impacts literature that the marginal effect of a given temperature
shock on aggregate economic outcomes is increasingly negative for warmer climates.

The inclusion of a main effect λh associated with the time-varying state variable allows for the
possibility that expected impacts may depend on changes in expected temperatures, net of the
impact of climate change on the distribution of temperature shocks. For example, if a hot country
stabilizes at a climate that is 1◦C warmer than some reference period, the productive potential
of the country is altered even in the absence of temperature shocks because the new climate will
be more or less conducive to different economic activities. Neglecting this likelihood amounts
to assuming perfect climate adaptation in the long run and that climate change is only socially
impactful through its positively biasing the distribution of annual temperature shocks.

It is worthwhile to take stock of the assumptions underlying the sequence of regressions spec-
ified in Equation (3). First, because coefficients for each horizon are estimated through distinct
regressions using differently constructed variables from different subsamples of the data, there
are in principle no restrictions imposed by the model on the shape of the resulting impulse re-
sponse function for a given value of the state variable; it is in this sense that the method is partially
non-parametric.

This flexibility is particularly appealing in the context of estimating responses to weather
shocks. As summarized in Section 2.4, fully parametric methods require the modeler to assume
either of the extreme persistence patterns distinguished in Figure 2 with limited ability to accom-
modate intermediate persistence dynamics. By instead allowing the modeler to remain mostly
agnostic to the data generating process, this method circumvents a notorious source of extreme
estimation instability and can accommodate any persistence structure in principle without restric-
tion7. Graphically, the sequence of coefficient estimates {β1h}H

h=0 in Equation (3) maps directly
to the differences between the black and red time series in the first “levels” row; equivalently the
sequence defined as the first difference in this sequence of coefficients correspond to the difference
between the red and black time series depicted in the second “growth” row. Thus, a one-period
level effect would be represented by a sequence where β1h = 0 for all horizons h > 0 while a
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constant growth effect would imply a sequence converging to a non-zero constant8.
The single-equation local projections model is asymptotically equivalent regardless of whether

the outcome is specified as h-period long differences as in Equation (3) or as h-period projections in
levels. However, recent work has shown that the former has particularly appealing finite-sample
properties which make it especially robust to misspecification, largely eliminating well-known
biases associated with highly persistent and even non-stationary processes (Piger and Stockwell
2025; Jordà and Taylor 2025). This is particularly valuable in a climate impacts literature where
GDP regressions are commonplace despite their vulnerability to unit root concerns (Nelson and
Plosser 1982; Campbell and Mankiw 1987).

Still, the model is not entirely free of restrictions. Most critically, the model specified in Equa-
tion (3) imposes within-horizon linearity assumptions on the coefficients of interest. Since the
shock enters additively into Equation (3), responses to the shock are assumed to scale proportion-
ally so that a 1◦C shock has exactly twice the impact of a 0.5◦ shock and the exact negative of the
effect of a -1◦C shock. By the same principle, the model also imposes linearity on the interaction
effect, imposing symmetry in the state dependence such that holding all other factors fixed, the
expected impact of a shock is assumed to be kβ2h percentage points more positive in a climate
some quantity k degrees warmer than baseline and −kβ2h more negative in a climate k degrees
cooler than baseline. While appreciating that unpredictable non-linearities abound in the interac-
tions between social and climate systems (Dietz et al. 2021), I consider these simplifications much
more preferable to generalized alternative models.

The gains to unbiasedness from minimally parametric models naturally come with costs in
estimation efficiency; IRFs estimated by local projection regressions are fundamentally noisier
than their parametric and structural counterparts such as vector autoregressions9. For this reason,
we expect resulting estimates to be less precise than more restrictive methods, particularly for
increasingly distant projection horizons since the available sample size in a fully balanced panel
reduces linearly in h.

Collecting estimates of the coefficients of interest {β̂1h, β̂2h}H
h=0 from Equation (3) and adopting

the notation of Jordà (2023), our set of local projection estimates imply a family Rτ→y(h; T) of
state-dependent impulse responses as a function of the state variable T:

Rτ→y(h; T) := β̂1h + β̂2h · T (4)

3.1.2 Estimating state-dependent cumulative multipliers

To make progress accounting for the persistence of temperature shocks themselves (see: Sec-
tion 2.3), Figure 3 depicts impulse responses which result from using temperature shocks them-
selves as an outcome variable y as constructed by two commonly used datasets for gridded his-
torically observed weather. We plot separate impulse responses for three representative states cor-
responding to the 20th and 80th percentiles of country-year expected temperatures in our sample

8Residuals across the projection horizon are generally autocorrelated but do not affect consistency of point estimates.
8Of course, under a conservative null hypothesis of non-persistence at all horizons, a permanent growth effect cannot
be affirmatively evidenced with finite data and the modeler can only produce evidence of a lower bound on this
persistence.

9Different compromises in this bias-variance tradeoff can be obtained by imposing additional restrictive parametric
assumptions such as the functional approximation approach of Barnichon and Matthes (2018) which can substantially
diminish estimation error.
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(10◦C colored blue and 26◦C colored red) and their average (18◦C, roughly the 40th percentile and
colored green). This coloring scheme and these reference temperatures will be used throughout
the rest of this paper. 10

Figure 3: State-dependent response of temperature shocks to a 1◦C temperature shock

State-dependent impulse responses of identified temperature shocks estimated us-
ing two commonly used temperature datasets. Dots in black denote significant
evidence of autocorrelation and asterisks denote significant state dependencies in
this autocorrelation. Fo both products, persistence is large in magnitude for the
first 1-2 periods. Negative horizons are included as a check for significant pre-
shock trends.

Points along the IRFs depicted in black correspond to point estimates which are deemed sig-
nificantly persistent by a joint hypothesis test with α = 0.05. The underlying test is based on
the significance-band test recently introduced in Inoue et al. (2025) and adapted for our state-
dependent setting as described in Section A2.2. In short, we have adopted a convention where
filled circles correspond to significant main effects and asterisks correspond to significant inter-
action effects under a joint null hypothesis of non-persistence at each horizon. The presence of
a significant effect up to horizon h is interpreted as evidence of a lower bound of h-period per-
sistence. Thus, the IRFs presented in Figure 3 constitute significant evidence that temperature
shocks positively influence successive temperature shocks for at least four periods although the
magnitude of this persistence is mostly diminished within 1-2 years.

10Note that for expositional convenience, we have transformed our state variable to center on the intermediate reference
temperature of 18◦C so that the responses in green correspond to the sequence of estimated main effects β̂1h while the
responses in blue and red incorporate equivalent but opposite interaction effects corresponding to ±8◦C deviations
from this reference state
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As emphasized by Nath et al., we will want to directly account for this persistence when at-
tributing social impacts to a unit temperature shock. An analogy can be drawn to the estimation
of multipliers in empirical macroeconomics: when estimating the impulse response of, for exam-
ple, GDP to a fiscal policy shock, one must account for the tendency of stimulus programs to be
implemented in stages or to be followed by additional, if typically smaller, rounds of stimulus.
Otherwise, the effect sizes implied by simple impulse response functions misattribute cumulative
changes in the outcome only to the initial unit shock; the calculation of multipliers scale these
effects at each horizon by the corresponding accumulation of shocks. As such, we will want to
present our results in the form of these cumulative temperature multipliers rather than as raw
impulse response functions.

In ??, I describe how I modify methods for efficiently estimating cumulative temperature mul-
tipliers in order to implement this transformation while retaining the ability to statistically test for
persistence. Ultimately, the process of estimating cumulative temperature multipliers for some
outcome y amounts to estimating a cumulative variant of the original single-equation model in
Equation (3). That is, for every discrete income quantile q of interest and projection horizon
h ∈ {0, 1, ..., H}, we estimate the following state-dependent model:

∆c
hyq

i,t+h = mq
1,hτ̂c

i,t+h + mq
2,hτ̂c

i,t+hTit + λhTit + Zq
itγ

q
h + µi + ηt + ε

q
i,t+h (5)

Here, variables denoted by a superscript c are cumulative versions of the original variables
constructed using the one-step process summarized by Algorithm A1 in ??. The quantile-specific
matrix of controls Zq

it include lags ` ∈ {1, ..., L} of the shocks, the interaction of the shock with the
state variable, the outcome ∆yq

i,t−`, and country-level aggregate growth ∆yi,t−`.
State-dependent cumulative temperature multiplier estimates {m̂1,h + m̂2,hTit}H

h=0 describe the
effect of an identified temperature shock on the cumulative stock of outcome yq after h periods as
a function of the expected temperature.

3.2 Empirical results: evidence for a temperature effect on within-country inequality

Panel (a) of Figure 4 summarizes the results of estimating separate sets of state-dependent
cumulative temperature multipliers for all 10 within-country income deciles. Here, color-coding
follows the same intuitive scheme as previous plots with blue and red corresponding to repre-
sentative expected temperatures of 10 and 26◦C respectively11. The points in asterisks indicate
significant interactions which impose differentiated effects based on expected climate. These ef-
fects persist for between 1-3 years, concentrating negative impacts in hot countries while keeping
cooler countries relatively insulated, consistent with the aggregate results standard in the climate
literature and the dynamic GDP results reported in ??. Estimation error is larger than when es-
timating GDP impacts in Figure A2, unsurprising given the difference in temporal coverage and
data quality.

Importantly, we are now able to compare impacts across quantiles within countries. Focusing
on hot-climate countries, the estimates reported in Panel (a) imply an incidence pattern wherein
negative effects of a transitory temperature shock to hot countries are found at all quantiles but
are particularly dire at the bottom. For 26◦C countries, the 90% confidence intervals for the impact
of a temperature shock on cumulative income a year after the shock is [-10.0,-2.9] percent for the

11We omit the green 18◦C main effect to avoid over-busy plots, but point estimates are implied as the average of the
two depicted curves due to the linearity of the interaction effect.
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Figure 4: Temperature multipliers of national income by quantile

Estimates of the cumulative temperature multiplier for different quantiles of na-
tional income for two representative ‘states’ each: a 10◦C country in blue and a 26◦

country in red. Asterisks denote statistically significant state-dependencies. The
top row (a) depicts results for each decile of the national income distribution while
the bottom row (b) depicts results decomposing for each percentile within the top
decile (i.e., D10 in the top row).
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bottom decile compared to [-3.2, 0.3] percent for the second decile. This generally improves as
one moves up the income distribution, stabilizing at approximately [-2.4,0.6] percent by the fourth
decile through to the 99th percentile. Interestingly, the estimated impacts then discontinuously
drops to [-3.9, -0.5] for the richest percentile. Panel (b) shows this discontinuity within the top
decile and also indicates this effect is significantly persistent for two additional years. In contrast,
cumulative growth incidence is much flatter across the income distribution with point estimates
suggesting positive impacts are somewhat larger for the middle classes between the third and
sixth deciles.

Figure 5 and the bottom panel of Figure 5 capture these discontinuities at the extremes more
clearly by plotting point estimates of percentile-level impacts over time for our three represen-
tative climates. These figures imply that negative expected impacts to hot countries are indeed
concentrated on both the bottom 10% and the top 1% of the distribution12. To the best of my
knowledge, this particular vulnerability of the highest incomes in hot and generally poor coun-
tries to transitory environmental shocks has not been previously observed or theorized although
it is consistent with recent work outside environmental economics demonstrating this group’s
disproportionate sensitivity to aggregate conditions even compared to other members of the top
income decile (Roine et al. 2009; Alvaredo et al. 2018). In ongoing work, I investigate the extent to
which this may be driven by weather-induced capital depreciation, capital shares in agricultural
income, and the relative unavailability of weather derivatives in these settings.

This first set of results describe inequalities in the growth incidence of impacts across a national
income distribution as a function of the local climate. The disproportionate impacts to the bottom
decile strongly imply a regressive effect: In the aftermath of an isolated temperature shock, a
representative member of the the bottom decile in a 26◦C country can expect to earn 7% less in
total over the next three years than they would had the shock never occurred. This compares to
losses of 2.2% for the median adult in their country and a gain of 3.0% for their counterpart in a
country with a 10◦C climate. At the same time, a representative member of the 100th percentile in
the same 26◦C country, represented by the thinnest sliver at the top of the rightmost distributional
contour plot in (b), can expect to earn 5.9% less over those three years than they would otherwise
compared to 3.6% for the 99th percentile.

12As mentioned in Section 2, the income data for the bottom 10% is not well suited for decomposition into percentile
effects but one would expect an ideal decomposition would reveal a similarly steep within-decile gradient in which
negative impacts are driven by the poorest percentiles within the bottom 10%.
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Figure 5: Temperature multipliers of national income by quantile, point estimates

(a) Temperature multipliers of income. 3D surfaces represent estimates of the
temperature multiplier of income for the bottom decile and percentiles 11-100 of
a national income distribution. Curves in the multiplier-horizon plane represent
dynamics for different income quantiles while curves in the multiplier-percentile
plane are akin to h-period growth incidence curves attributable resulting from a
pulse of temperature. Columns correspond to different representative climates.

(b) Aggregate vs. distributional multipliers. Planes at the bottom flatten the sur-
faces in panel (a) by using color gradients to represent positive (blue) and negative
(brown) multipliers. Strips at the top are the equivalent multipliers estimated for
country-level economic aggregates.

19



4 Counterfactual analysis

4.1 From identified temperature shocks to systematic climate change

The results presented in Section 3.2 are expressed as responses to a 1◦C shock, which notably
is much larger in magnitude than shocks we would expect to observe in a typical year in any
country. Referring back to the time series of shocks illustrated in Figure 1, the median magnitude
of a shock varies by the rate of climate change which will in turn vary across geographies and time.
For the warmest 33% of country-years in our data, the median shock was approximately 0.19◦C in
absolute value in the 1970s and then increased to between 0.30-0.37◦ in the ensuing decades. Thus,
hot-country effects can be understood as responses to a shock 3-5 times larger than is typical. For
the coldest 33% of country-years, the median magnitude of a shock was approximately 0.35◦C
in the 1970s and 1980s, 0.51-0.53◦C in the 1990s and 2000s, and 0.59◦C in the 2010s. Their effect
sizes then can be interpreted as the response to a shock just 2-3 times larger in magnitude than the
median.

So while those results consistently demonstrated much larger distributional responses to the
same shock for residents in warmer geographies, this disparity is at least partially offset by the
relatively mild incidence of shocks in these settings. The counterfactual analysis we document in
this section is valuable as a means of interpreting these reduced-form results practically, account-
ing for the spatial incidence of temperature shocks as well as other factors such as the absolute
distribution of global incomes across country-quantiles and the spatial distribution of the global
population across different geographies as observed in the historical record.

In the absence of a structural climate-economy model, it is standard practice to extrapolate
reduced-form effects estimated using short-term weather variation to infer long-term impacts of
sustained climate change. Broadly, this involves applying the estimated impact model to a coun-
terfactual climate scenario to produce a counterfactual trajectory for the social outcome of interest.
The difference between the social outcome of interest under this counterfactual relative to its tra-
jectory under a reference scenario (e.g., for historical attribution studies like the present analysis,
the actual historically observed trajectory of this outcome) are then attributed to the differences in
the climate under the two scenarios.

In our case, we are estimating the effect of changes to the global climate system between 1980
and 2016 on the global distribution of income. Using the observed history of country-year temper-
atures, we calculate the implied history of country-year termperature shocks as defined in Equa-
tions (1a) and (1b). For the bottom national income decile and each of the 11th to 100th national
income percentiles, we collect B = 500 bootstrap estimates of the state-dependent cumulative tem-
perature multipliers of income according to Equation (5). Integrating these percentile-bootstrap
specific estimates to the observed histories of temperature shocks implies a counterfactual history
of country-percentile-year income absent any temperature shocks between 1980 and 2016. The
differences between this simulated history of global income distributions and the observed his-
tory of global income distributions are then attributed to changes in the climate over this 37-year
period.

This process (and its analogous implementation for projecting future climate change impacts)
offers several significant advantages over prior approaches to counterfactual attribution. First,
since estimates of cumulative damages result from local projection regressions, dynamic impacts
are identified directly from medium-term long differences in income and disciplined by a statisti-
cal test of their persistence rather than imposed by modeling choices as described in Section 2.4.

Second, models which use levels of temperature as their treatment variable have been chal-
lenged on the grounds that these counterfactual exercises require them to extrapolate effects of
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treatments increasingly beyond the range of observed data. This is much less of a concern in our
setting where the treatment variable is an identified temperature shock which is dynamically an-
chored by a time-varying state variable. As a result, the treatment variable remains largely within
the range of the historical record even under rapid warming because the state variable gradually
adjusts to recent experience. In this sense, our model accommodates a notion of adaptation in
the sense of Hsiang (2016) wherein the “direct” effects of exposure to a temperature shock can
be partially offset by Bayesian “belief effects”; the same temperature level is less of a ‘shock’ the
more experience one has with similar temperatures. In our case, a one-time discrete shift from one
climate to a new climate would be fully internalized after 30 years.

More rapid adaptation can be accommodated by lowering the value of M defining the state
variable. Alternatively, Bilal and Känzig (2024) and Nath et al. (2024) define temperature shocks
as the residuals from autoregressive distributed lag models (ARDLs) of temperature levels. In so
doing, they impose a model of much more immediate and complete adaptation so that if a 26◦C
country were to be exposed to, for example, 40◦C weather five years in a row, the fifth year will
impose no economic cost because it would register as a 0◦C shock. This difference in assumed
adaptability is why their time series of historically observed temperature shocks is largely ho-
moskedastic around a constant mean of approximately zero while ours is positively trended in
periods of warming (as seen in Figure 1).

Our more conservative construction offers a number of attractive advantages. First, it is ar-
guably more consistent with the empirical literature on climate adaptation; a recent review of this
work finds “limited evidence” of observable adaptation moderating the direct impacts of weather
shocks in the context of climate change (Burke and Emerick 2016). Secondly, it lends itself to a
simple, intuitive, and consistent approach to estimating damages from climate change: the empir-
ical analysis isolates an identified temperature shock to estimate its social impacts and then the
counterfactual analysis represents climate change as a positive trended bias in the distribution of
these shocks and uses the empirical result to calculate damages.

This intuition is not available to approaches which define temperature shocks as residuals
from an ARDL. Because the time series of temperature shocks reverts to a mean of zero within the
periodicity of its maximal lag, the distribution of temperature shocks are nearly homoskedastic
and symmetrical about 0 even amid climate change. As a result, the same intuitive approach to
counterfactual analysis would imply near-zero cumulative social costs from climate change.13

4.2 Results

In constructing these counterfactual series, each bootstrap b assigns each country-quantile-
year to a global percentile corresponding to their population-weighted income ranking across
the global income distribution for that year. Finally, we calculate the long-term growth between
1981 and 2016 implied by each series for each bootstrap series. The resulting long-term growth
incidence curve is depicted in Figure 6.

These results may be interpreted as impacts of observed climate change insofar as it the influ-
ence of climate change is sufficiently well-captured by asymmetries in the incidence of tempera-
ture shocks and changes to expected temperatures over the 36-year period of analysis. ?? presents

13To arrive at non-zero climate damages, Bilal and Känzig (2024) and Nath et al. (2024) instead seem to use the con-
ventional “delta method” appropriate for parametric models which use temperature levels as their treatment. This
entails first linearizing the difference in temperature levels before and after the relevant period of warming; for exam-
ple, under the most extreme warming scenario between 2010 and 2100, the population-weighted mean temperature
increase over this period is 4.3◦C. These differences are then seemingly interpreted as a representative long-term
‘shock’ to be multiplied by the coefficient on the original temperature shock.
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additional results decomposing these effects into their anthropogenic and natural contributions by
applying methods from climate attribution science to output from state-of-the-art climate models,
arriving at largely the same conclusions.

Here, the historically observed level of growth over this period is represented by a black filled
line, reproducing a version of the “elephant curve” famously documented in Lakner and Mi-
lanovic (2016). The blue band depict the 90% confidence interval for the counterfactual removing
the influence of temperature shocks on income. Regions where this band is above the observed
incidence curve imply deprivations of income attributable to the incidence of temperature shocks
over this period. Point estimates imply probable net harm for around 65% of the global sample.

Despite proportionally milder absolute warming in the poorest countries (see Figure A5), this
negative incidence still concentrates on the world’s poorest 20%, representing 1.2 billion people in
our 2016 sample and mostly located in warm developing countries. Importantly, as in Alvaredo
et al. (2018), calculations underpinning this figure omit the bottom 10% of each country’s income
distribution because of the inclusion of unemployed adults and compositional instability effects
which arise from assigning deciles of very large populations to percentiles representing smaller
populations. For the poorest percentile in our data, we find that incomes absent these dispropor-
tionate temperature shocks would be 29% [18, 41] higher than they are today. As these effects
exclude precisely the subpopulation we have already found to be the most economically vulner-
able to temperature shocks, this growth incidence curve should be interpreted as a likely very
conservative estimate of deprivations to the global poor.

Elsewhere, estimates also imply likely harm from warming for the 52nd-97th percentiles. That
the top 3% are relatively unaffected despite the negative effects for the top 1% in Section 3 is
because these groups are dominated by extreme incomes in relatively cold countries. Effects on
the global middle class are relatively tempered with slightly positive point estimates estimated
for essentially the entire second quartile, also consistent with the within-country incidence curves
which found the middle class experienced the mildest economic impacts across all climates.

Despite these different-signed effects, the counterfactual growth incidence band is noticeably
flatter than the observed elephant curve, implying that historical climate change has been globally
regressive in addition to acting as a drag on global economic growth. Figure 6 plots the time series
for the global equivalents of the within-country inequality measures introduced earlier. In our
within-country analysis, we identified regressive transfers from the bottom decile and progressive
transfers from the top percentile. The historical effects represented in these graphs summarize
how these distributional patterns aggregate globally according to index-specific social welfare
functions14. All three measures are increasing in inequality and for each, redistributive effects are
found to be large and regressive: proportionally, the global Theil index increases by 0.9% [-1.8,
2.8], the Gini index by 0.5 points [-0.2, 1.0], and the mean logarithmic deviation index by 3.9% [1.6,
6.4].

14One interpretation of the Theil measure is as a geometric measure of inequality. For any given income distribution,
an individual with $100,000 giving $10 to someone with $10,000 would improve the Theil inequality index by the
exact same amount as someone with $1,000 giving the same $10 to someone with $100 because the ratio of incomes
between the donor and recipient are the same in both cases (Cowell 2011).

Conversely, a $100 income earner regressively transferring 10% of their income to a $1,000 income earner would
offset the progressivity of a $100,000 income-earner transferring a ten-thousandth of their income to a $10,000 income
earner. If that is still not intuitive, then you are in good company (Sen 1973).

14One interpretation of the mean logarithmic deviation measure is as the average disutility of a given income distribu-
tion compared to an equal distribution of the same total income, assuming logarithmic individual utility. Of the three
measures, the Theil places the most welfare weight on redistribution among the top quantiles while the MLD places
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Figure 6: Global income inequality (1980-2016), observed vs. counterfactual

(a) Change in income levels (%), 1980 vs. 2016. Black line depicts observed
increases in income levels by global income percentile among positive income-
earners. Bands in gold depict the 95% confidence interval of the counterfactual
increase had warming stayed fixed at 1980 levels.

(b) Global inequality, total and decomposed. On left, black lines depict the ob-
served evolution of global inequality from 1980 to 2016 by three common inequal-
ity indices. Colored bands represent the 95% confidence interval for their evolution
under the same counterfactual. On right, we decompose the mean log deviation
series into its between-country and within-country contributions.
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The right panel in Figure 6 decomposes the effect on the global MLD index into its within-
country and between-country dimensions. We find that climate change has unambiguously exac-
erbated both varieties of inequality, increasing between-country inequality by 8.7% [4.9, 13.3] and
within-country inequality by 2.6% [0.0, 5.6]. To the best of my knowledge, this represents the first
empirical estimate of the latter quantity in the vast empirical literature on climate impacts.

5 Conclusion

This paper represents an important advance in our understanding of the social welfare im-
plications of climate change. Taking advantage of newly available income data, I first present
new evidence that temperature shocks impact economic inequality between people, building on
existing distributional analysis which has largely been restricted to coarse comparisons between
countries. I show that temperature shocks have historically widened income inequalities within
countries by quantifying the disproportionate and persistent burden faced by the lowest income
quantiles, particularly in hotter countries.

A counterfactual analysis suggests that systematic global warming between 1980 and 2016
substantially increased global inequality, an effect equally driven by its thoroughly studied effect
widening between-country disparities just as much as by this newly documented effect exacerbat-
ing within-country inequality. For the lowest percentile of income earners globally, these effects
are most pronounced, amounting to cumulative income losses on the order of 29% and concen-
trated in populous developing countries.

Incorporating these distributional implications is essential not just for understanding climate
change as a social phenomenon, but also for informing the efficient and equitable design of cli-
mate policy. These results challenge the adequacy of prevailing utilitarian cost-benefit approaches
to even non-environmental impact evaluations which have been criticized for embedding a “pro-
found indifference to inequality” (Sen et al. 2020). In addition, distributional impacts are likely
key to identifying and overcoming barriers to the political viability of sufficiently ambitious cli-
mate policy. As Chancel, Piketty, et al. (2022) write, “Policy reforms which do not properly factor
in the degree of inequality in a country, and the winners and losers of these reforms, are unlikely
to be publicly supported and are likely to fail.”

Yet, the limitations of the present analysis invite further research across the interdisciplinary
climate community emphasizing these disaggregated distributional impacts. For one, even per-
fectly accurate income data is known to be a flawed measure of welfare among the impoverished.
This is partially reflected in our data where bottom-coding groups all unemployed peoples to-
gether, regardless of class and social security, requiring my analysis to consider the bottom deciles
within these countries together. There is likely to be incredible material inequality within this
group that income data is poorly suited to distinguish. Related considerations have made much
less widely available consumption expenditures the preferred measure of welfare for the global
poor in development economics and innovations to overcome this data gap are necessary to better
capture the poverty implications of climate change (Jean et al. 2016).

the most welfare weight on redistribution among the bottom quantiles.
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A1 Data

A1.1 Construction of inequality indices

Data from the World Inequality Database can be extracted at the country-percentile level with
variables reporting averages, minimums, maximums, and shares of national income. As grouped
data, its use for the construction of inequality indices still requires the modeler to make assump-
tions about the distribution of household incomes within these disaggregated groups. This be-
comes increasingly influential for the construction of entropy-based inequality measures such as
the mean logarithmic deviation or the Theil index for higher levels of inequality across groups.

For a given inequality measure J, the lower bound JL is calculated by assuming perfect equality
within all groups such that all individuals are assigned their group mean income. The upper
bound JU is calculated by assigning a proportion of the individuals within a group the minimum
income of the group and the remainder the maximum income of the group.

Figure A1: Sensitivity of inequality indices to within-quantile inequality

Cowell 2011 describes multiple ‘compromise’ assumptions between the two extremes, finding
that they each approximate an average where the lower bound is given twice the weight of the
upper bound. Figure A1 depicts IRFs of the two inequality measures under each of these three
assumptions. For our purposes, we use the compromise construction whenever a choice is neces-
sary.
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A2 Methods

Here, we provide additional exposition of our application of the method of local projections
for inferring a dynamic social response to the temperature shock described in Section 2.3. The
supplementary analysis here uses country-level GDP from the Penn World Tables (Feenstra et al.
2015) as the outcome variable of interest. The results documented here may also be compared to
other estimates in the prolific literature on global climate impacts estimated by top-down methods,
which most commonly use similar country-level aggregates as outcomes.

A2.1 State-dependent impulse response of GDP

We first estimate Equation (3) on a country-year panel dataset using the h-period long differ-
ence in the logarithm of GDP as our outcome variable ∆hyi,t+h. Figure A2 illustrates the estimated
impulse response of GDP up to a projection horizon of 6 years after a unit temperature shock.
Colors correspond to three representative temperatures depicted in different colors. The plots in
the second row depict the same functions annualized by simplying dividing estimates at each
projection horizon h by h + 1.

The contemporaneous estimates in the IRFs in the first row of Figure A2 depict a pattern now
standard in the aggregate impacts literature featuring near-null temperature effects in cold cli-
mates, mild effects in mid-temperature climates, and the largest negative effects in hot climates.
The evolution of these impacts over time is less commonly depicted and here produce a pattern
qualitatively similar to those reported by Nath et al. wherein per capita GDP appears to stay per-
sistently depressed over the entire projection horizon. The second row depicts the same estimates
but annualized by scaling down estimates by their corresponding horizon h + 1 to more clearly
depict convergence behavior relative to the contemporaneous effect of the shock.

Global inequality effects of climate change thus are not just dependent on the shape of the
impulse response responses across quantiles but also the distribution of warming over space and
time as well as the actual distributions of incomes across quantiles. The simulation exercises to
be described in Section 4 are valuable because they account for four relevant climate inequali-
ties: inequality of temperature effects across an income distribution, inequality in the incidence of
temperature effects across different climates, inequality in the global distribution of income, and
spatial inequality in the incidence of absolute warming.

A2.2 Inferring persistence from local projection estimates

The colored error bands depicted in Figure A2 reflect pointwise estimation error. This is par-
ticularly important to include in this context since the volume of regressions underlying a single
LP-IRF precludes convenient summary in a single regression table.15 One may be tempted to in-
fer from the fact that the hot-country bands in red do not intersect the horizontal axis over the
entire projection horizon that these estimates constitute significant evidence to reject a joint null
hypothesis of level effects which persist for fewer than 15 years.

However, the uncertainty depicted by error bands corresponds only to individual hypothesis
tests. Since estimates and residuals across an IRF are serially correlated—for example, the green
bands straddle the horizontal axis but all estimates are negative— the relevant test of significance
is a joint hypothesis test not represented by pointwise error. The significance of the main effect of

15For example, the results depicted in Figure A2 derive from 16 different regressions. Later results derive from as many
as 91. All graphically depicted errors and significance tests presented in this paper correspond to a significance level
of α = 0.1.
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Figure A2: State-dependent dynamic responses to a 1◦C shock

(a) State-dependent impulse response of GDP. The plots in the top row corre-
spond to estimates of impulse responses of GDP estimated by the H + 1 local pro-
jections regressions specified in Equation (3) for three representative temperatures
depicted in different colors. The plots in the bottom row depict the same estimates
and error bands annualized by dividing values at each horizon h by h + 1

(b) State-dependent temperature multiplier of GDP. The cumulative multiplier is
interpreted as the change in cumulative GDP over h periods attributable to a unit
shock in τ̂, net of its impact on future shocks τ̂. Annualized multipliers represent
the same estimates but divided by the projection horizon.
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the impulse responseRτ→y(h) amounts to testing the null hypothesis that all main effects up to h
are 0:

H0(h) : β1,0 = β1,1 = ... = β1,h = 0

Since the number of coefficients being considered in the joint hypothesis increases in h, the
coverage of the joint hypothesis test must be adjusted for the inclusion of each additional horizon
to compensate for the problem of multiple hypothesis testing. Inverting this joint null hypothesis,
Inoue et al. (2025) derives convenient estimators for the implied “significance band” defined to

satisfy the following condition:

P

[
H⋂

h=0

{
ζ α

2(H+1)

σh√
T − h

< β̂h < ζ1− α
2(H+1)

σh√
T − h

}]
≥ 1− α

The scaling of the significance level α by 2(H + 1) is an implementation of the Bonferroni cor-
rection. In practice, rejecting the null for the main effect corresponding to horizon h+ 1 is sufficient
to reject the null of non-persistence up to horizon h. Graphically, these bands are represented by
a region straddling the horizontal axis such that estimates of β1h contained within it are insuffi-
ciently large enough to reject the hypothesis of a null effect that the impulse response persists up
to period h, analogous to the bands drawn to measure persistence in time series correlograms.
The width of these bands increases with the projection horizon because the available estimation
sample for a near-balanced panel is reduced by one period per unit for each additional projection.

These significance bands are specific to the main effect and are represented by the gray regions
in the middle panels of Figure A3. Since ours is a state-dependent model, I derive equivalent sig-
nificance bands specific to the interaction effects. These are defined relative to the point estimates
of the main effects and are depicted by the gray regions in the panels on the left and right. Points
outside these regions are considered sufficient to reject the null hypothesis that interaction effects
do not persist up to h periods. By the linearity assumption, the null hypothesis of zero interaction
effects for a 10◦ climate is rejected if and only if it is rejected for a 26◦ climate.

For comparison, Figure A3 depicts a placebo test where I construct significance bands equiva-
lent to those described above to test the persistence in the effect of temperature on another widely
available and potentially non-stationary growth rate: that of population. As I am not aware of
any theory or evidence to suggest temperature shocks would meaningfully impact country-level
population growth16, we should expect the tests to return precise null results. Indeed, we find
with all point estimates resulting from two separate population datasets easily contained by the
corresponding significance bands. Notably, if we were to misuse the error bands as indicators of
statistical significance, we would misinterpret the estimated IRFs as evidence to reject the null for
large subintervals of the projection horizon for mid-temperature and hot climates. Instead, the
entirety of these error bands are easily enveloped by the significance bands.

Since including significance bands, color-coded error bands, and point estimates for multiple
IRFs can clutter space, I adopt a convention of omitting the significance bands entirely and instead
coloring black the point estimates which are located outside the implicit error bands. In all IRFs
beginning with those depicted in Figure A2, rounded points correspond to significant main effects

16While there is an established literature on climate impacts on mortality rates (Barreca and Shimshack 2012; Barreca,
Clay, et al. 2016; Carleton, Jina, et al. 2022), absolute magnitudes are miniscule relative to total populations
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Figure A3: Impulse responses to a 1◦C shock, including significance bands

(a) GDP impulse response. Gray significance bands in the middle panels corre-
spond to the threshold magnitudes for significant main effects while those in the
left and right panels are centered on the point estimates of these main effects (green
filed lines) and correspond to the threshold for significant state interaction effects.

(b) Placebo test: national population response. Equivalent to the bottom row
of panel (a) but for national population, an outcome variable we do not expect
temperature to affect and with conventional error bands also included. Rows differ
by source of population data.
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while asterisks correspond to significant interaction effects. By this test, these results cannot reject
the null hypothesis of one-period level effects.

A2.3 The state-dependent temperature multiplier

Another reason to prefer temperature shocks to levels of temperature as treatment variables is
that models which use the latter neglect to sufficiently account for autocorrelation in temperature
itself when estimating dynamic effects (Nath et al. 2024; Bilal and Känzig 2024). An analogy can be
drawn to the estimation of multipliers in empirical macroeconomics: when estimating the impulse
response of, for example, GDP to a fiscal policy shock, one must account for the tendency of stim-
ulus programs to be implemented in stages or to be followed by additional stimulus. Otherwise,
the effect sizes implied by simple impulse response functions misattribute cumulative changes in
the outcome only to the initial unit shock; multipliers scale these effects at each horizon by the
corresponding accumulation of shocks.

Figure 3 depicts the impulse response of temperature shocks to a pulse of itself for our three
representative climates. Each exhibits very similar persistence patterns across two independent
temperature dataset. An application of the persistence test covered in Section A2.2 implies au-
tocorrelations which persist for up to 10 years though only the first 1-2 periods are qualitatively
large (approximately 21% and 9% respectively with insignificant heterogeneity across climates).17

Cumulative multipliers are estimated in order to scale down the estimated impulse response of
GDPRτ→y(h) by the impulse response of the shock to itselfRτ→τ(h) to account for this dynamic
treatment schedule.

Cumulative responses are traditionally computed by first constructing cumulative versions of
the two IRFs: Rc

τ→y(h) := ∑h
j=0Rτ→y(j) for the outcome of interest y andRc

τ→y(h) := ∑h
j=0Rτ→τ(j)

for the shock τ̂. Then the cumulative temperature multiplier mτ→y(h) would be calculated as the
ratio

mτ→y(h) :=
Rc

τ→y(h)
Rc

τ→τ(h)

However, this approach has a couple of inconvenient downsides. First, as noted by Jordà and
Taylor (2025), computation of standard errors of a ratio of two random variables is complicated
and non-standard. Second, it is computationally inefficient in the sense of requiring 2(h + 1)
(or 4(h + 1) in our state-dependent case) separate local projections to obtain the corresponding
multiplier for each projection horizon h.

Instead, we follow the recommendation to use the one-step method described in Ramey (2016)
and applied in Ramey and Zubairy (2018). We adapt the method for our state-dependent setting
through the procedure summarized in Algorithm A1.

We can use the resulting coefficients to trace a cumulative multiplier functionRc
τ→y(h; T) anal-

ogous to Equation (4) but which accounts for the effect of persistence in the shock. Since estimation
of the coefficients follows directly from a system of local projection regressions, standard inference
is preserved and the significance testing methods outlined in Section A2.2 conveniently remain
available. Figure A2 demonstrates an application of the method to estimate temperature multipli-
ers of GDP. The estimated multiplier over horizon h is interpreted as the difference in cumulative

17This contrasts with the finding of NRK who measure shock persistence using levels of temperature to infer that
temperature shocks remain 10-20% higher for at least nine years following a unit shock.
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GDP over the h periods following an isolated 1◦C shock relative to a counterfactual where the
shock had never occurred.

Estimated cumulative multipliers are found to be substantial at larger horizons but the sig-
nificance band test cannot reject a null of non-persistence beyond one period. 90% confidence
intervals for the effect of an identified temperature shock on cumulative GDP are [-0.49, 1.1] per-
cent for 10◦C climates and [-2.7,-1.1] percent for 26◦C climates.

Algorithm A1: One-step state-dependent cumulative multiplier

for h = 0 to H do
Estimate the IRFRτ→τ(h) as defined in Equation (4), collecting state-dependent shock
coefficients α̂1,h, α̂2,h;

Define ∆c
hyi,t+h := ∑h

j=0 ∆jyi,t+j;

Define τ̂c
i,t+h := τ̂it

[
∑h

j=0 α̂1,j + α̂2,jTit

]
;

Estimate local projection:
∆c

hyi,t+h = m1,hτ̂c
i,t+h + m2,hτ̂c

i,t+hTit + λhTit + Zitγh + µi + ηt + ε i,t+h;
end
Output: Multiplier coefficients m̂1,h, m̂2,h, λ̂h for h ∈ {0, ...H}

A3 Supplementary results
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Figure A4: Temperature multipliers estimated from household surveys

(a) Impacts on income by decile

(b) Impacts on consumption by decile

Data from Lahoti et al. (2016)
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A4 Anthropogenic attribution

To attribute a global inequality effect to historical anthropogenic climate change, we imple-
ment a counterfactual analysis which decomposes observed temperature effects into their natural
and anthropogenic contributions, adapting methods commonly used in climate attribution sci-
ence.

A4.1 Climate simulation data

Climate simulation data comes from the contributions of climate modeling groups to the World
Climate Research Program’s Coupled Model Intercomparison Project (CMIP). The CMIP, initiated
in 1995, is a framework to coordinate, standardize, and disseminate the results of state-of-the-art
simulations of the global climate for the benefit of the international climate research community.
Data used in this study comes from CMIP6, the sixth and newest18 generation of models (Eyring
et al. 2016). Data is provided as a collection of globally gridded time series summarizing the joint
evolution of several hundred climate variables under various pre-specified calibrations. We will
primarily be interested in the models’ simulations of near-surface air temperature.

All participating models are “coupled”, meaning that they explicitly account for interactions
and feedback between distinct components of the global climate system such as the atmosphere,
the cryosphere, land surface, and the ocean. Because the manner in which this integration is
achieved is idiosyncratic to each model, computationally expensive, and highly sensitive to exter-
nal calibrations, coordinating the set of “experiments” that participating models run is necessary
for comparability and interpretability. For example, one of the four indexes which define an exper-
iment is the realization index which corresponds to the set of geophysical initial conditions at the
beginning of the simulation period. By holding the initial conditions fixed, differences in results
across models within the same experiment can be more readily attributed to the distinguishing
features of the model without being confounded by differences in implementation. Similarly, dif-
ferences in the same climate model’s results across different perturbations to the initial conditions
provide a measure of the model’s internal variability. The CMIP thus provides a systematic way
of decomposing total variation across models and experiments both internal and external to the
model. Coordination also enables identification of systematic and idiosyncratic biases in model
designs that then inform the next generation of models.

Among the other three indexes which define an experiment, the forcing index is central to our
counterfactual analysis. Forcings are factors which affect the net transfer of radiative energy in the
climate system, essentially the energy the Earth receives from the sun minus that which it expels
back into outer space. Anthropogenic forcings include, for example, industrial greenhouse gas
emissions, deforestation, and the transformation of land for arable agriculture. Natural forcings
include aerosol expulsions from major volcanic activity and variation in solar irradiance such
as those associated with the 11-year solar cycle.19 Comparing simulations which only differ in
their forcings allow one to attribute differences in outcomes to the differences in forcings; we
describe next how comparisons of this kind form the basis of both our historical and projection
counterfactual analyses.

18After a delayed rollout, outputs from most CMIP6 models were made accessible by 2022
19Natural forcings are distinct from sources of natural variability such as the ENSO cycle because they are external to

coupled climate models.
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Figure A5: Model-implied spatial distributions of global warming, 1980-2014

Simulated spatial distribution of anthropogenic warming for eight randomly se-
lected climate models. The bottom-right plots the average distribution for all 13
CMIP6 models which ran both historical and historical-natural simulations.
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A4.2 Construction of historical counterfactuals

Our historical counterfactual analysis uses simulations from a category of experiments called
“historical runs”. For the CMIP6 generation of models, historical simulations begin at a pre-
industrial baseline period in 1850 and run through to 2014. Among the forcing scenarios used
in these historical experiments is one simply labeled “historical”, which attempts to represent the
impacts of influential forcings actually imposed on the climate system over this period, such as the
deforestation of the Amazon rainforest and the eruptions of Krakatoa in 1883 and Mt. Pinatubo in
1991. Results from this historical run are required of all participating CMIP6 models since these
“hindcasts” can be directly compared to observational data in order to evaluate model accuracy.
Models collectively perform remarkably well at reproducing the historical record (Fan et al. 2020;
Zelinka et al. 2020; Yazdandoost et al. 2021). For this reason, studies which use CMIP data for the
purpose of counterfactual analysis are advised to include the full available “multi-model ensem-
ble” for experiments of interest (Tebaldi and Knutti 2007; Knutti et al. 2010).

A subset of these models also simulate a set of optional ‘historical-natural’ experiments which
are defined identically except with anthropogenic forcings held fixed at pre-industrial levels. The
differences between the two forcings by the same model holding all other variables fixed is then
interpreted as the model’s simulation of anthropogenic contributions to climate change. Compar-
isons between historical and historical-natural experiments are commonly used in the subfield of
attribution science concerned with quantitatively measuring anthropogenic contributions to the
intensity, frequency, or probability of weather events or trends.

For each climate model m and country i, we use an observed series T and the two model-
specific historical series T hist and T nat to construct a counterfactual series T̃ where anthropogenic
forcings have been held fixed since the first year of the simulation period. The iterative process
is summarized in Algorithm A2 and illustrated in Figure A6 using data from the Philippines as
an example. In panel (a), differences between model-specific simulations of national temperature
when including all forcings (orange) and when excluding anthropogenic forcings (green horizon-
tal axis). Local regression fits are depicted in red. Light-blue shaded regions correspond to 30-year
reference periods used to define temperature normals (dark blue dots) for the start and end of the
simulation period 1980-2014.

In panel (b), The linearized difference between normals depicted as dark blue lines in (a) are
subtracted from the observed temperature series (black) starting in 1980 to produce counterfactual
temperature series (green). Each of these is interpreted as the temperature history that would have
been realized had anthropogenic forcings been held fixed at 1980 levels according to a specific
model of the climate system.

In panel (c), linearizing the difference between the climate normals defined at either end of the
simulation period and subtracting the result from an observed temperature series implements the
standard “delta method” for constructing bias-corrected climate counterfactuals. Counterfactual
economic series for a random selection of five climate models are depicted in green and are con-
structed by iteratively applying the decile-level dynamic income responses depicted in Figure 4
to the observed and counterfactual temperatures depicted in (b). Their difference is interpreted as
the change in income attributable to anthropogenic forcings since 1980. Green bands correspond
to 90% confidence intervals generated from 500 bootstrap estimates of the response functions.
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Figure A6: Constructing counterfactuals holding anthropogenic forcings fixed

Demonstration of the delta method for constructing bias-corrected counterfactuals
using data for the Philippines as an example.
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Algorithm A2: Constructing temperature counterfactuals holding anthropogenic forc-
ings fixed at 1980 levels

Input: {T hist
m,i,t},{T nat

m,i,t},{Tit}
for t∗ ∈ {1980, 2014} do
T hist

m,i,t∗ ← 1
30 ∑30

j=1 T hist
m,i,t∗−j;

T nat
m,i,t∗ ← 1

30 ∑30
j=1 T nat

m,i,t∗−j;

δm,i,t∗ ← T
hist
m,i,t∗ − T

nat
m,i,t∗ ;

end
for t = 1980 to 2014 do

δm,i,t ← (t− t0)
δm,i,2014−δm,i,1980

2014−1980 ;
T̃nat

m,i,t ← Tit − δm,i,t;
end

Construct states {Tnat
m,i,t} by applying Equation (1a) to {T̃nat

m,i,t} then subtracting by T̃nat
m,i,1980;

Construct shocks {τ̂nat
m,i,t} by applying Equation (1a) and Equation (1b) to {T nat

m,i,t};
Output: {T̃nat

m,i,t},{T
nat
m,i,t},{τ̂nat

m,i,t}

42



Algorithm A3: Constructing economic counterfactuals holding anthropogenic forcings
fixed at 1980 levels

Input: {T̃nat
m,i,t},{T

nat
m,i,t},{τ̂nat

m,i,t}, B bootstrap samples indexed b
Initializing series:

for b = 1 to B do
Specify desired simulation interval: (t0, t1)← (1980, 2014);
EstimateRc

τ→Y(h; T, b) from Equation (5);
Specify maximum projection horizon H using persistence test from Section A2.2;
Define IRFsRτ→Y(h; T, b) := Rc

τ→Y(h; T, b)−Rc
τ→Y(h− 1; T, b);

Collect IRF coefficients;
{β̂1,h,b, β̂2,h,b, λ̂h,b}H

h=0;
Define δτ

m,b,i,t := τ̂nat
m,i,t − τ̂it;

Define δτT
m,b,i,t := τ̂nat

m,i,t · T
nat − τ̂it · Tit;

Define δT
m,b,i,t := Tnat

m,i,t − Tit;
Initialize δY

m,b,i,t ← 0;
Initialize Ỹnat

m,b,i,t0
:= Yi,t0

end
Iteratively constructing series:

for t = t0 + 1 to t1 do
for b = 1 to B do

for h = 0 to H do
δY

m,b,i,t+h ← δY
m,b,i,t+h + β̂1,h,b · δτ

m,b,i,t + β̂2,h,b · δτT
m,b,i,t + λ̂h,b · δT

m,b,i,t;
end

Ỹnat
m,b,i,t ←

(
1 + log( Yit

Yi,t−1
) + δY

m,b,i,t

)
Ỹnat

m,b,i,t−1

end
end

Output: Ñnat
m,b,i,t
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Figure A7: Anthropogenic growth incidence relative to 1980 baseline by climate model
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