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Combining satellite imagery and
machine learning to predict poverty
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Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts
to study these outcomes and to design policies that improve them. Here we demonstrate an
accurate, inexpensive, and scalable method for estimating consumption expenditure and asset
wealth from high-resolution satellite imagery. Using survey and satellite data from five African
countries—Nigeria,Tanzania, Uganda, Malawi, and Rwanda—we show how a convolutional
neural network can be trained to identify image features that can explain up to 75% of the
variation in local-level economic outcomes. Our method, which requires only publicly available
data, could transform efforts to track and target poverty in developing countries. It also
demonstrates how powerful machine learning techniques can be applied in a setting with
limited training data, suggesting broad potential application across many scientific domains.

A
ccurate measurements of the economic
characteristics of populations critically
influence both research and policy. Such
measurements shape decisions by individ-
ual governments about how to allocate

scarce resources and provide the foundation
for global efforts to understand and track pro-
gress toward improving human livelihoods. Al-
though the quantity and quality of economic
data available in developing countries have im-
proved in recent years, data on key measures of
economic development are still lacking for much
of the developing world (1). This data gap is
hampering efforts to identify and understand
variation in these outcomes and to target inter-
vention effectively to areas of greatest need (2, 3).
Data gaps on the African continent are par-

ticularly constraining. According to World Bank
data, during the years 2000 to 2010, 39 of 59
African countries conducted fewer than two
surveys from which nationally representative
poverty measures could be constructed. Of these
countries, 14 conducted no such surveys during
this period (4) (Fig. 1A), and most of the data
from conducted surveys are not in the public
domain. Coverage is similarly limited for the Dem-
ographic and Health Surveys (DHS), the pri-
mary source for population-level health statistics
in most developing countries as well as for
internationally comparable data on household
assets—a common measure of wealth (Fig. 1B).
For the same 11-year period, 20 of the 59 coun-

tries had no DHS asset-based surveys taken, and
an additional 19 had only one. These short-
comings have prompted calls for a “data rev-
olution” to sharply scale up data collection efforts
within Africa and elsewhere (1). But closing these
data gaps with more frequent household surveys
is likely to be both prohibitively costly—perhaps
costing hundreds of billions of U.S. dollars to
measure every target of the United Nations Sus-
tainable Development Goals in every country over
a 15-year period (5)—and institutionally difficult,
as some governments see little benefit in having
their lackluster performance documented (2, 6).
Given the difficulties of scaling up traditional

data collection efforts, an alternative path to mea-
suring these outcomes might use novel sources of
passively collected data, such as data from social
media, mobile phone networks, or satellites. A
popular recent approach leverages satellite images
of luminosity at night (“nightlights”) to estimate
economic activity (7–10). While this particular
technique has shown promise in improving ex-
isting country-level economic production statistics
(7, 10), it appears less capable of distinguishing
differences in economic activity in areas with
populations living near and below the interna-
tional poverty line ($1.90 per capita per day). In
these impoverished areas, luminosity levels are
generally also very low and show little variation
(Fig. 1, C to F, and fig. S1), making nightlights
potentially less useful for studying and tracking
the livelihoods of the very poor. Other recent
approaches using mobile phone data to estimate
poverty (11, 12) show promise, but could be dif-
ficult to scale across countries given their re-
liance on disparate proprietary data sets.
Herewe demonstrate a novelmachine learning

approach for extracting socioeconomic data from
high-resolution daytime satellite imagery. We then
validate this approach in five African countries for
which recent georeferenced local-level data on

economic outcomes are available. In contrast to
existing methods, ours can produce fine-grained
poverty and wealth estimates using only data
available in the public domain.

Transfer learning

High-resolution satellite imagery is increasingly
available at the global scale and contains an
abundance of information about landscape fea-
tures that could be correlated with economic
activity. Unfortunately, such data are highly un-
structured and thus challenging to extract mean-
ingful insights from at scale, evenwith intensive
manual analysis. Recent applications of deep
learning techniques to large-scale image data
sets have led to marked improvements in funda-
mental computer vision tasks such as object de-
tection and classification, but these techniques
are generallymost effective in supervised learning
regimeswhere labeled training data are abundant
(13). In our setting, however, labeled data are scarce.
Even in the instances where detailed household
surveys do exist (Fig. 1, A andB), individual surveys
typically only contain information for hundreds
of locations, yielding data sets many orders of
magnitude smaller than those typically used in
deep learning applications. Thus, although deep
learningmodels such as convolutional neural net-
works could in principle be trained to directly
estimate economic outcomes from satellite imag-
ery, the scarcity of training data on these out-
comes makes the application of these techniques
challenging.
We overcome this challenge through a multi-

step “transfer learning” (14) approach (see sup-
plementary materials section 1), whereby a noisy
but easily obtained proxy for poverty is used to
train a deep learning model (15). The model is
then used to estimate either average household
expenditures or average household wealth at the
“cluster” level (roughly equivalent to villages in
rural areas or wards in urban areas), the lowest
level of geographic aggregation for which latitude
and longitude data are available in the public-
domain surveys that we use (see supplementary
materials 1.4). Household expenditures, where
available, are the standard basis from which na-
tional poverty statistics are calculated in poor
countries, and we use expenditure data from the
World Bank’s Living Standards Measurement
Study (LSMS) surveys. To measure wealth, we
use an asset index drawn from the DHS, com-
puted as the first principal component of survey
responses tomultiple questions about asset own-
ership. Although the asset index cannot be used
directly to construct benchmark measures of
poverty, asset-basedmeasures are thought to bet-
ter capturehouseholds’ longer-runeconomic status
(16, 17), with the added advantage that many of
the enumerated assets are directly observable to
the surveyor and therefore are measured with
relatively little error.
Toestimate theseoutcomes,our transfer learning

pipeline involves threemain steps. First, we start
with a convolutional neural network (CNN)model
thathasbeenpretrainedon ImageNet, a large image
classification data set that consists of labeled images
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from 1000 different categories (18). In learning to
classify each image correctly (e.g., “hamster”
versus “weasel”), the model learns to identify low-
level image features such as edges and corners
that are common to many vision tasks (19).
Next, we build on the knowledge gained from

this image classification task and fine-tune the
CNN on a new task, training it to predict the
nighttime light intensities corresponding to input
daytime satellite imagery. Here we use the word
“predict” to mean estimation of some property
that is not directly observed, rather than its com-
monmeaning of inferring something about the
future. Nightlights are a noisy but globally
consistent—and globally available—proxy for
economic activity. In this second step, the model
learns to “summarize” the high-dimensional input
daytime satellite images as a lower-dimensional
set of image features that are predictive of the
variation in nightlights (see Fig. 2). The trained
CNN can be treated as a feature extractor that
has learned a nonlinearmapping from each input
image to a concise feature vector representation
(supplementarymaterials 1.1). Both daytime imag-
ery (drawn here from the Google Static Maps
API) and nightlights (20) are available at relatively
high resolutions for the entire global land surface,
providing a very large labeled training data set.
Finally, we use mean cluster-level values from

the survey data along with the corresponding
image features extracted from daytime imagery
by the CNN to train ridge regressionmodels that
can estimate cluster-level expenditures or assets.
Regularization in the ridgemodel guards against
overfitting, a potential challenge given the high
dimensionality of the extracted features and the
relatively small survey data sets. Intuitively, we
expect that some subset of the features that ex-
plain variation in nightlights is also predictive of
economic outcomes.
How might a model partially trained on an

imperfect proxy for economic well-being—in this
case, the nightlights used in the second training
step above—improve upon the direct use of this
proxy as an estimator of well-being? Although
nightlights display little variation at lower ex-
penditure levels (Fig. 1, C to F), the survey data
indicate that other features visible in daytime
satellite imagery, such as roofing material and
distance to urban areas, vary roughly linearly with
expenditure (fig. S2) and thus better capture
variation among poorer clusters. Because both
nightlights and these features show variation
at higher income levels, training on nightlights
can help the CNN learn to extract features like
these that more capably capture variation across
the entire consumption distribution.
Nightlights also have difficulty distinguishing

betweenpoor, denselypopulatedareasandwealthy,
sparsely populated areas, an added motivation
for not using nightlights to estimate per capita
consumption. Our approach does not depend on
nightlights being able to make this distinction,
and instead uses nightlights only as intermediate
labels to learn image features that are correlated
with economic well-being. The final step of our
analysis, in which we train a model to directly

estimate local per capita outcomes from daytime
image features, does not rely on nightlights.
Visualization of the extracted image features

suggests that the model learns to identify some
livelihood-relevant characteristics of the landscape
(Fig. 2). The model is clearly able to discern se-
mantically meaningful features such as urban
areas, roads, bodies ofwater, andagricultural areas,
even though there is no direct supervision—that
is, the model is told neither to look for such fea-
tures, nor that they could be correlated with eco-
nomic outcomes of interest. It learns on its own
that these features are useful for estimating

nighttime light intensities. This is in contrast
to existing efforts to extract features from sat-
ellite imagery, which have relied heavily onhuman-
annotated data (21).

Results

Our transfer learningmodel is strongly predictive
of both average household consumption expend-
iture and asset wealth as measured at the cluster
level across multiple African countries. Cross-
validated predictions based on models trained
separately for each country explain 37 to 55% of
the variation in average household consumption
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Fig. 1. Poverty data gaps. (A) Number of nationally representative consumption surveys occurring in
each African country between 2000 and 2010. (B) Same as (A), for DHS surveys measuring assets. (C to
F) Relationship between per capita consumption expenditure (measured in U.S. dollars) and nightlight
intensity at the cluster level for four African countries, based on household surveys. Nationally repre-
sentative share of households at each point in the consumption distribution is shown beneath each panel
in gray. Vertical red lines show the official international extreme poverty line ($1.90 per person per day),
and black lines are fits to the data with corresponding 95% confidence intervals in light blue.
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across four countries for which recent survey
data are available (Fig. 3), and 55 to 75% of the
variation in average household asset wealth across
five countries with recent survey data (fig. S3).
Models trained on pooled consumption or asset
observations across all countries (hereafter “pooled
model”) perform similarly, with cross-validated
predictions explaining 44 to 59% of the overall
variation in these outcomes (fig. S4).
This high overall predictive power is achieved

despite a lack of temporal labels for the daytime
imagery (i.e., the exact date of each image is un-
known), as well as imperfect knowledge of the
location of the clusters, as up to 10 km of random
noise was added to cluster coordinates by the
data collection agencies to protect the privacy
of survey respondents. Predictive power for assets
is nearly uniformly higher than for consumption,
perhaps reflecting the larger sample sizes avail-
able in the asset surveys; that the asset index is
thought to serve as a better proxy for households’
longer-run economic status (16, 17) (which could
be better correlated with landscape features that
change slowly over time); and/or the possibility
that certain assets in the index (such as roof type)
are directly identified in extracted features (see
supplementarymaterials 2.1).We investigate these
potential explanations by constructing our own
asset index from variables available in theUganda
LSMS and comparing predictive performance for
that index relative to performance for consump-
tion measured in the same survey. We find that
differences in the outcome being measured, rather
than differences in survey design or direct identi-
ficationofkeyassets indaytime imagery, likelyexplain
these performance differences (see supplementary
materials 2.1 and fig. S5). Finally, asset-estimation
performance of our model in Rwanda surpasses
performance in a recent study using cell phone data
to estimate identical outcomes (11) (cluster-level r2 =
0.62 in that study, and r2 = 0.75 in our study; r2 is
the coefficient of determination), again with the
added advantage that our predictions can be con-
structed entirely from publicly available data, ob-
viating the need to obtain and evaluate proprietary
data sets when scaling across countries.
To test whether our transfer learning model

improves upon the direct use of nightlights to
estimate livelihoods, we ran 100 trials of 10-fold
cross-validation separately for each country and
for the pooled model, each time comparing the
predictive power of our transfer learning model
to that of nightlights alone. To understand rel-
ative performance on different subsets of the
consumption distribution, trials were run sep-
arately with the sample of clusters restricted to
those whose average consumption fell below
each quintile of the consumption distribution.
The same procedure was repeated for assets.
Despite being trained partially on nightlights,

our model is on average substantially more pre-
dictive of variation in consumption and assets
than nightlights alone. For expenditures, our
model outperforms nightlights at nearly all points
in the consumption distribution, for both the
pooledmodel and for countries run independently
(Fig. 4A and fig. S6). In the pooled setting, for
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Fig. 2. Visualization of features. By column: Four different convolutional filters (which identify, from left
to right, features corresponding to urban areas, nonurban areas, water, and roads) in the convolutional
neural network model used for extracting features. Each filter “highlights” the parts of the image that
activate it, shown in pink. By row: Original daytime satellite images from Google Static Maps, filter ac-
tivation maps, and overlay of activation maps onto original images

Fig. 3. Predicted cluster-level consumption from transfer learning approach (y axis) compared to
survey-measured consumption (x axis). Results are shown for Nigeria (A),Tanzania (B), Uganda (C), and
Malawi (D). Predictions and reported r2 values in each panel are from fivefold cross-validation. Black line is the
best fit line, and red line is international poverty line of $1.90 per person per day. Both axes are shown in
logarithmic scale. Countries are ordered by population size.
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clusters below the international poverty line, our
model outperforms nightlights in 81.3% of trials,
with an average increase in r2 of 0.04. For clusters
below two times the poverty line, our model out-
performs nightlights in 98.5% of trials, with an
average increase in r2 of 0.10, an 81.2% increase
in explanatory power. For clusters below three
times the poverty line, our model outperforms
nightlights in 99.5% of trials, with an average
increase in r2 of 0.12, corresponding to a 54.2%
increase in explanatory power. Results for in-
dividual countries are similar, with the predictive
power of our model outperforming nightlights
for all countries at nearly all parts of the con-
sumption distribution (fig. S6). Our model’s rel-
ative performance against nightlights is even
better for assets than for consumption (Fig. 4B),
particularly for clusters with low average asset
levels. Using more information in nightlights be-
yond mean luminosity leads to some improve-
ment in nightlights performance, but this improved
useof nightlights is still outperformedbyourmodel
(see supplementary materials 2.2 and fig S7).
We also study whether our approach improves

upon other simpler approaches to extracting in-
formation from daytime imagery and predicting
economic outcomes using available survey data.
We find that our CNN feature extractor far out-
performs common general-purpose image features
such as color histograms and histograms of ori-
ented gradients (see supplementary materials
2.3 and fig. S8). Our approach also performs as
well as or better than an intuitive approach of
using data frompast surveys to predict outcomes
inmore recent surveys (see supplementarymaterials
2.4 and table S2).
To further quantify the statistical significance

of our results, we perform an experiment in
which we randomly reassign daytime imagery
to survey locations and retrain themodel on these
incorrect images (see supplementary materials
1.7). We repeat this experiment 1000 times within
each country and for the pooled model, then
compare the predictive power when daytime
images were assigned to their correct locations
(as in Fig. 3) to the distribution of r2 values
obtained from the 1000 placebo trials. As shown
in Fig. 4, C and D, the r 2 values obtained using
“correct” daytime imagery are much higher than
any of the r2 values obtained from the reshuffled
images, for both consumption and assets, in-
dicating that our model’s level of predictive per-
formance is unlikely to have arisen by chance.
Finally, capitalizing on our survey-based mea-

sures of consumption and assets in multiple
countries, we study the extent to which a model
trained using data and satellite image features
fromone country can estimate livelihoods in other
countries. Examining whether a particular model
generalizes across borders is useful for under-
standing whether accurate predictions can be
made from imagery alone in areas with no survey
data—an important practical concern given the
paucity of existing survey data in many African
countries (see Fig. 1)—as well as for gaining in-
sight about commonalities in the determinants of
livelihoods across countries.
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Fig. 4. Evaluation of model performance. (A) Performance of transfer learning model relative to
nightlights for estimating consumption, using pooled observations across the four LSMS countries.Trials
were run separately for increasing percentages of the available clusters (e.g., x-axis value of 40 indicates
that all clusters below 40th percentile in consumption were included). Vertical red lines indicate various
multiples of the international poverty line. Image features reduced to 100 dimensions using principal
component analysis. (B) Same as (A), but for assets. (C) Comparison of r2 of models trained on correctly
assigned images in each country (vertical lines) to the distribution of r2 values obtained from trials in which
the model was trained on randomly shuffled images (1000 trials per country). (D) Same as (C), but for
assets. Cross-validated r2 values are reported in all panels.

Fig. 5. Cross-border model generalization. (A) Cross-validated r2 values for consumption predictions
for models trained in one country and applied in other countries. Countries on x axis indicate wheremodel
was trained, countries on y axiswheremodelwas evaluated. Reported r2 values are averaged over 100 folds
(10 trials, 10 folds each). (B) Same as in (A), but for assets.
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We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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STATISTICAL PHYSICS

Quantum thermalization through
entanglement in an isolated
many-body system
Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,
Philipp M. Preiss, Markus Greiner*

Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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