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The budget line



The budget line
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The budget line: changes in income
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The budget line: changes in prices
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Representing preferences



Preferences and utility representations

- Utility function
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Preferences are invariant to (positive) monotonic transformations of utility

- If u(x) is a valid representation,
then so is v(x) if v(x) = f(u(x))
for a monotonic function f

- Adding/subtracting
- Multiplying/dividing
- Exponentiating

- Taking logs



Marginal utility and marginal rate of substitution
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MRS is invariant to to (positive) monotonic transformations of utility

- Suppose we have
V(x1,%2) = f(u(xq,x2)) for
monotonic function f

- If MRS is the same, then the
shape of the indifference
curves are the same

- Thus preferences have infinite
utility function representations
but uniquely shaped
indifference curves



Example: Cobb-Douglas utility functions
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Elements




The elements of an optimization problem

X2

In general:
1. Objective function
2. Choice variables

3. Constraint
mid  w (x,90)
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The tangency condition




The tangency condition: greatest indifference curve tangent to the budget line
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The tangency condition

Exceptions:
- Intersection at a kink

- Intersection at bundles at < 0
quantities

Ruling these out:

- Smooth indifference curves
(differentiable utility functions)

- Restrict to interior optima

Then the tangency condition is
NECESSARY for optimality

1



The tangency condition

What about concave preferences?




The tangency condition

Assumptions for “well-behaved”
preferences

1. Monotonocity: more of any
good gives more utility

2. Convexity

Then the tangency condition is
NECESSARY AND SUFFICIENT for
optimality
- But: not necessarily unique: for
that, need strict convexity




The tangency condition: in economic terms

- Slope of the indifference curve
= slope of the budget line (i.e.,
the price ratio)

- MRS: the amount of
additional good 2 that would
deliver the same utility as
another unit of good 1

- Slope of budget line: the rate
at which the market relatively
values good 2 to good 1

- What if these were not equal?

15



Deriving the demand functions




Deriving a demand function: intuition

- (Exogenously) given economic
environment

1. Prices py and p,
2. Budget m
3. Preferences u(xy,X;)
- We want functions xj(p1, p2, m)
and x3(p1, p2, m) that give us
the optimal bundle

(Xilk(p'la P2a m)vxgzﬁ(p'lv p27 m))



Deriving a demand function: intuition

- To do this, we compute “first-order” conditions for optimality
- “First-order” because they entail first derivatives: of the indifference curve

(MRS) and of the budget line (price ratio)

- Condition 1: the budget constraint must bind
- Condition 2: the slope of the indifference curve equals the slope of the budget

line
MRS = Slope of budget line (times negative one)
MU, . .
& —— = Price ratio
MU,
9 (17 )
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- Two conditions give us two equations in two unknowns x; and x,: the
solution is a unique bundle unless they are linearly dependent



Deriving a demand function: intuition

max u(Xq, X2
X%} ( 7 )

St xip1+Xp2 <M

Two main ways of solving this constrained optimization problem

1. Convert to an unconstrained optimization problem
- Take the budget line equation and express x; in terms of x, (or vice versa)
- Substitute into the objective function
- Solve like an optimization problem with one choice variable and no constraint

)

- Back out the other quantity by substituting the resultant x; into the budget
constraint

2. The method of Lagrange multipliers (not covered in our treatment) 18



Example: Cobb-Douglas preferences
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Example: Cobb-Douglas preferences
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Example: Cobb-Douglas preferences
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