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Quick review: optimization and
Marshallian demand



The elements of an optimization problem

1. Objective function
2. Choice variables
3. Constraints

Solution: the values of the choice variables that best satisfy the objective
function while satisfying the constraints
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The consumer’s utility maximization problem

1. Objective function
2. Choice variables
3. Constraints

Solution: the affordable bundle that delivers the most utility

• We call this Marshallian demand x∗1 (p1,p2, ) and x∗2(p1,p2,m)

• Equivalently written x(p,m) where x∗ = (x∗1 , x∗2) and p = (p1,p2) are vectors
• These Marshallian demand functions give us the optimal bundle of a
consumer with the given preferences, for any prices p > 0 and budget m > 0
given
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Marshallian demand x(p,m) and indirect utility v(p,m)

1. Given prices p and budget m, what is the maximum amount of utility a
consumer with the preferences u(x1, x2) can achieve?

2. We already have an expression for the quantities that maximize utility for any
given p and m: x∗(p,m)

3. So just substitute optimal quantities x∗ for choice quantities x in the original
utility function u(x1, x2): v(p,m) ≡ u(x∗1 (x∗(p,m)))

4. We distinguish indirect utility using v instead of u to indicate it reflects an
optimization result and that it is a function of p and m rather than x1 and x2

5. Roy’s identity gives us the reverse:

x∗i (p,m) = −
∂v(p,m)

∂pi
∂v(p,m)

∂m
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Optimization methods for well-behaved preferences: Marshallian demand

1. System of simultaneous equations
1.1 Tangency condition: MRS = price ratio (implicitly comes from assumption of

convexity and interior solution)
1.2 Binding constraint: expenditures = income I (monotonicity)
1.3 Solve the system of two equations in two unknowns

2. Convert to an unconstrained optimization problem
2.1 Binding constraint: expenditures = income

• Solve for one choice variable x1 in terms of primitives (p1, p2,m) and the other
choice variable x2 (or vice versa)

2.2 Plug this expression for x1 (or x2) into the objective function
2.3 Solve as an unconstrained optimization problem with one first-order condition

(tangency condition) then plug into the expression for x2 (or x1)
3. The method of Lagrange multipliers (not covered)
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The consumer’s expenditure minimization problem

1. Objective function
2. Choice variables
3. Constraints

Solution: the affordable bundle that least expensively achieves utility level u

• We call this Hicksian demand xh1 (p1,p2,u) and xh2 (p1,p2,u)
• Use “expenditure” rather than “cost” just because cost in microeconomics is
usually associated with production
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Optimization methods for well-behaved preferences: Hicksian demand

1. System of simultaneous equations
1.1 Tangency condition: MRS = price ratio (same tangency condition)
1.2 Binding constraint: utility function equals level u (different constraint)
1.3 Solve the system of two equations in two unknowns (primitive u instead of m)

2. Convert to an unconstrained optimization problem
2.1 Binding constraint: utility function equals level u (different constraint)

• Solve for one choice variable x1 in terms of primitives (p1, p2,u) and the other
choice variable x2 (or vice versa) (primitive u instead of m)

2.2 Plug this expression for x1 (or x2) into the objective function (expenditure
rather than utility)

2.3 Solve as an unconstrained optimization problem with one first-order condition
(same tangency condition) then plug into the expression for x2 (or x1)

3. The method of Lagrange multipliers (not covered)
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Quick review: preferences and the
tangency condition



For “well-behaved” preferences, the tangency condition is necessary and suffi-
cient for optimality

MRS = price ratio ≡ MU1
MU2

=
p1
p2

⇔ MU1
p1

=
MU2
p2

Necessary: the optimal bundles satisfy the tangency condition

1. Preferences have indifference curves everywhere differentiable (no kinks)
2. Preferences have interior solutions only (rules out concave preferences)
3. Necessary, but not sufficient: optimal bundles satisfy the tangency condition
but bundles that satisfies the tangency condition may not be optimal

Test your understanding:

• How does requiring only interior solutions rule out concave preferences?
• Are there well-behaved preferences that are ruled out here?
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For “well-behaved” preferences, the tangency condition is necessary and suffi-
cient for optimality

MRS = price ratio ≡ MU1
MU2

=
p1
p2

⇔ MU1
p1

=
MU2
p2

Necessary and sufficient: any bundle that satisfies the tangency condition must
be optimal

1. Preferences are monotonic
2. Preferences are convex

Test your understanding: are there preferences that are...

• convex with exactly one corner solution?
• convex with exactly two corner solutions?
• neither convex nor concave?
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“Well-behaved” preferences guarantee that the tangency condition is necessary
and sufficient for optimality

MRS = price ratio ≡ MU1
MU2

=
p1
p2

⇔ MU1
p1

=
MU2
p2

Necessary and sufficient and unique: if an interior bundle satisfies the tangency
condition and it must be the unique optimal choice

1. Preferences are monotonic
2. Preferences are strictly convex

Note: neither non-strict nor strict convexity guarantees the existence of an
interior bundle that satisfies the tangency condition
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Well-behaved preferences beyond
the tangency condition



Perfect complements

• Possible examples
• Left shoes vs. right shoes
• Rolling paper vs. tobacco
• Handlebars vs. wheels

• Intuition: we don’t really care
about the two goods. We only care
about the composite good made
up of a units of good 2 and b units
of good 1

• How do we get from preferences
to indifference curves to utility
functions?
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Perfect complements

Intuition: substitution doesn’t make
sense so the MRS is undefined
• If you’re at the kink point,
sacrificing any amount will strictly
decrease utility

• If you’re not at the kink point
• Sacrificing a marginal amount of
the excess good for the other
will not change utility

• Sacrificing a marginal amount of
the non-excess good for the
other can only decrease utility
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Perfect complements: algebraic argument
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Perfect complements: algebraic argument
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Perfect complements: algebraic argument
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Perfect substitutes

• Possible examples
• Organic vs. non-organic bananas
• Diet Coke vs. Coke Zero

• “I am always indifferent between a
units of good 2 and b units of
good 1”

• What does “always” mean here?m
• What does this mean for the slope
of the indifference curve?
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Perfect substitutes

MRS(x1, x2) =

∂u(x1,x2)
∂x1

∂u(x1,x2)
∂x2

=
MU1(x1, x2)
MU2(x1, x2)

= k

• If the MRS is constant, then
what form does the utility
function have?
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Perfect substitutes

Recall Pset 2:
MU1
MU2

vs. p1p2
⇔ MU1

p1
vs. MU2p2

• If LHS > RHS, then it is
utility-increasing to spend
more on good 1

• If LHS < RHS, spend more on
good 2

• If LHS = RHS, then the
consumer is indifferent 19
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Perfect substitutes

Recall Pset 2:
MU1
MU2

vs. p1p2
⇔ MU1

p1
vs. MU2p2

The three cases visualized
1. MRS ≡ α

β > price ratio
2. MRS ≡ α

β < price ratio
3. MRS ≡ α

β < price ratio
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Perfect substitutes and the demand function

Optimal bundle depends on
relative prices
• Prices p1,p2 and budget m
• Preferences:
u(x1, x2) = αx1 + βx2 + c

• Then what does the demand
function depend on?
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Quasilinear preferences

• Suppose indifference curves
are just vertical translations of
one another

• It then follows that indifference
curves have the form
x2 = k− v(x1)

• k is a constant unique to
each level of utility

• some function v of x1 giving
the shape displayed here

• Intuitive to index utility by k
• “Quasilinear”: linear in one
good, maybe not the other

22

Ky

KzI Kz

K,

⇒ Xz - V
Gli) is essentially

the utility function measured as K

[
uloc , iris = x2

- V64) perfect
¢ if V (xD is linear oweget a special case ofquasiGner preferences

sub#
*

"



Quasilinear preferences

max
{x1,x2}

v(x1) + x2

s.t. p1x1 + p2x2 ≤ m
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Quasilinear preferences: the “zero income effect”

p1(x1) = p2v′(x1)

• Suppose the tangency
condition is met at some
interior bundle (x∗1 , x∗2)

• What happens if we shift the
budget line?

• What if we were to trace the
optimal bundle as a function of
income?
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Quasilinear preferences: the “zero income effect”

• How can optimal demand for good 1 be independent of income if at income
0, we can’t afford any of either good and optimal demand must be zero?

• An example: starting at zero income, there is a range of subsistence incomes
where you spend any earnings you have on essentials like toothpaste

• But after a certain point, increases in income aren’t likely to make you use
more toothpaste and you might spend the “excess” earnings on something
like vacation or recreation

• Pset 3: clearly we have to consider multiple cases corresponding to interior
and corner solutions. What is the relevant threshold income level at which
point the zero income effect kicks in?
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Time permitting or problems to work
through on your own



Given preferences u(x) = min{αx1, βx2}

1. Solve for Marshallian
demands

2. Solve for indirect utility
3. Verify Roy’s identity for
good 1

4. Solve for Hicksian
demands and the
expenditure function
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Given preferences u(x) = min{αx1, βx2}

1. Solve for Marshallian
demands

2. Solve for indirect utility
3. Verify Roy’s identity for
good 1

4. Solve for Hicksian
demands and the
expenditure function

27


