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Logistics

• Midterm
• Consumer theory recordings now uploaded
• Today’s recording will be posted by Saturday
• In addition to annotated notes, will also post midterm review exercises not
covered today

• No problem set this week
• Problem Set 6 and recitation as usual next week
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Today: reviewing producer theory up to cost minimization

Introduction to producer theory

The Producer’s Problem I: Cost Minimization

Properties of production technologies

Solving the cost-minimization problem

Examples of production technologies

Other cost functions
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Introduction to producer theory



Modeling the producer: what’s a producer?

For our purposes, the producer is a ‘firm’ making production decisions to
maximize profit π. But what even is a firm?

• Governments, oil companies, startups, independent artists: can one model
describe all of them?

• Even in a classic ‘firm’, whose interests are the firm’s interests?
• Corporate boards, middle managers, workers, consultants, even consumers
• Principal-agent problems: do different people have conflicts of interest?
• Structure: firm behavior when managers are owners? when workers are
owners? when consumers are owners?

• Dynamics: do objectives change? are they consistent in short and long term?
• Other possible objectives: maximize revenue, quantity produced,
employment, producer surplus, stock price; minimize output price?
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The producer’s problem

maxπ = max(Revenue− Cost)
= max

q
{p(q)× q− c(q)}

• Seems easy to solve
• In a perfectly competitive market, profits are always equal to zero and revenue
is equal to costs

• But if markets are not perfectly competitive (which in real life is always),
revenue and costs are generally not equal

• A single choice variable q with no apparent constraint?
• p(q): the inverse demand function, comes from the “demand side”
• c(q): the minimized cost of producing at quantity q
• So we break down the producer’s problem into two parts
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Profit maximization as two sequential optimizations

max
q
p(q)× q− c(q)

I. Cost minimization:
• taking as given a desired quantity of
production q, prices p, and
technology f(x1, x2)

• find the least-cost method of
producing q output using goods 1
and 2

II. The supply decision:
• given the cost function c(q) derived
in the first step

• choose the quantity of production
q∗ ≥ 0 that maximizes profit
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The Producer’s Problem I: Cost
Minimization



The Producer’s Problem I: Cost Minimization

max(Profit) = max(Revenue− Cost) = max
q

{p(q)q− c(q)}

Step 1: Cost minimization

min
{x1,x2}

w1x1 + w2x2

s.t. f(x1, x2) ≥ q

Given:
• technological constraint f(x1, x2)
• input prices w1,w2
• output quantity q

Derive:
• conditional factor demand functions

x∗1 (w1,w2,q)
x∗2(w1,w2,q)

• cost function
c(q) = w1x∗1 (w1,w2,q) + w2x∗2(w1,w2,q)
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Cost minimization: comparisons to consumer’s problem

Preferences
• Preferences: utility functions map
bundles of goods (x1, x2) to a level
of utility

• Consumer compares how these
goods contribute to their utility vs.
how they are priced

• Evaluating these tradeoffs leads to
optimal quantities

• Expenditure is the product of these
good quantities and their prices

• Difference: utility is only ordinal

Technology
• Technology: production functions
map bundles of inputs (x1, x2) to a
level of production

• Producer compares how these
inputs contribute to their
production vs. how they are priced

• Evaluating these tradeoffs leads to
optimal input quantities

• Cost is the product of these input
quantities and their prices

• Difference: production is “real”, both
ordinal and cardinal 7



Technology as a constraint

• Inputs or “factors of production”
(x1, x2) or (L, K)

• Raw materials
• Land
• Labor
• Physical capital

• Given a bundle of inputs (x1, x2),
there is a limit to what can be
produced under the available
technology

• Figure: production set/function
in single-input y− x space,
similar to budget set/line

• Figure: isoquant in x2 − x1 space,
similar to indifference curve 8
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Properties of production technologies: monotonicity and convexity

• More of any input will never
reduce the amount you can
produce

• Graph: production set
• “Free disposal” assumption

• Convexity: at least as efficient to produce
using combinations of inputs as single
inputs on their own

• Suppose there exist two ways of producing 1
unit of output
1. Method A using (a1,a2) inputs
2. Method B using (b1,b2) inputs

• Suppose we want to produce 100 units of
output. We can use Method A 100 times or
Method B 100 times

• Alternatively, any convex combination (e.g.
75 units under A, 25 units under B) could
produce at least the same output with the
same resources
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Properties of production technologies: monotonicity and convexity

• More of any input will never
reduce the amount you can
produce

• Graph: production set
• “Free disposal” assumption

• Convexity: at least as efficient to produce
using combinations of inputs as single
inputs on their own

• Suppose there exist two ways of producing 1
unit of output
1. Method A using (a1,a2) inputs
2. Method B using (b1,b2) inputs

• Suppose we want to produce 100 units of
output. We can use Method A 100 times or
Method B 100 times

• Alternatively, any convex combination (e.g.
75 units under A, 25 units under B) could
produce at least the same output with the
same resources
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Properties of production technologies: returns to scale

• Suppose we’re initially producing f(x1, x2)
• What happens when we keep the mix of inputs the same, but just “scale”
them up by doubling the inputs? Or tripling?

• Monotonicity assumption requires that output increases, but is this increase
proportional? It depends on the production function f(x1, x2)

• This is a question we didn’t address in consumer choice because utility is
purely ordinal. Here, quantity produced is ordinal and cardinal so this is a
pertinent question

• Mathematically, for some scaling factor t > 1:
f(tx1, tx2) = tf(x1, x2)

> tf(x1, x2)
< tf(x1, x2)
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Constant returns to scale: f(tx1, tx2) = tf(x1, x2)

• If we have a factory producing at
f(x1, x2), the technology has CRS if
we can just build another three
factories doing the same thing to
quadruple production
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Increasing returns to scale: f(tx1, tx2) > tf(x1, x2)

• When there are productivity
benefits from scaling

• Example: Silicon Valley tech
companies locate near each other
for mutual benefit
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Decreasing returns to scale: f(tx1, tx2) < tf(x1, x2)

Non-textbook example: low-hanging fruit
• Imagine I’m one farmer working one acre
of land to produce f(1, 1)

• I can buy another acre and hire another
farmer to produce f(2, 2)

• But if the first plot of land I bought was
the best piece of land available, then the
next plot of land might have worse
features (different geography, less fertile
soil) and so it won’t be as productive

• Then f(2, 2) < 2f(1, 1)
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Example 1: f(x1, x2) = x21x22
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Example 2: f(x1, x2) = Axα1 xβ2
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Marginal product and the technical rate of substitution

Marginal product MPi(x1, x2)
• The additional output that results
from using an additional unit of input
i, keeping the other inputs fixed

• Comparable to marginal utility (but
with a direct interpretation)

Technical rate of substitution TRS(x1, x2)
• The amount of input 2 needed to
offset the production lost by reducing
input 2 by one unit

• Comparable to the marginal rate of
substitution (tradeoff between goods
that maintains the same level of
utility)

• Equivalent to the slope of the isoquant
(comparable to the slope of the
indifference curve)

17

q
'



Diminishing marginal product and diminishing technical rate of substitution

Diminishing MP
• We are looking at the production
resulting from a one-unit increase in
one input, holding all other inputs
fixed (so no tradeoff)

• Example: farmer working in a large
field (changing labor input, holding
land input fixed)

Diminishing TRS
• Slope of isoquant decreases in
magnitude as x1 increases, increases
as x2 increases

• There is some intermediate value at
which the marginal products of the
two inputs are equal and so TRS is -1
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Solving the cost-minimization problem

min
{x1,x2}

w1x1 + w2x2

s.t. f(x1, x2) ≥ q

• Interior solution for well-behaved technology comes from constraint binding
+ a tangency condition:

TRS(x1, x2) = −MP1(x1, x2)MP2(x1, x2)
= −w1w2

• The solution to the optimization problem is the conditional factor demand:

x∗(w1,w2,q)

“Conditional” because it is conditional on wanting to produce at some output
level q, which may not be the optimal quantity q∗ to maximize profit

• Plug into the objective function to get the optimized cost function

c∗(w1,w2,q) = w1x∗1 (w1,w2,q) + w2x∗2(w1,w2,q)
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Fixed-proportions production: f(x1, x2) = min{αx1, βx2}

• Example: doing home
improvement

• Inputs: one person, one hammer
• An additional hammer doesn’t
make one person more
productive

• An additional person doesn’t
make one hammer more
productive

• Straightforward comparison to
perfect complements in consumer
theory
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Fixed-proportions production: f(x1, x2) = min{αx1, βx2}

• If we want to produce q units of
output, we need at least q

α units of
x1 and q

β units of x2
• Clearly we do not want to use any
more than those amounts or else
costs will go up for the same level
of production

• Then clearly cost function will be

c(w1,w2,q) = w1
q
α
+ w2

q
β

=

(
w1
α

+
w2
β

)
q
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Perfect substitutes production: αx1 + βx2

• Example: I can complete an exam
using a red pen or a blue pen

• Similar: I can complete a problem
set by hand or by typing it up.
They are perfect substitutes even
though one may take me one hour
and the other two hours.
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Perfect substitutes production: αx1 + βx2

• The firm will only use the input
that’s

• cost efficient (most productive
per unit cost): max

{
α
w1 ,

β
w2

}

• or equivalently, least costly per
unit product (lowest cost per
unit product): min

{
w1
α , w2β

}

• Then clearly cost function will be

c(w1,w2,q) = min

{
w1
α
,
w2
β

}
q
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Cobb-Douglas production: f(x1, x2) = Axα1 xβ2

• Unlike in the preference case,
magnitudes here matter and have
a specific interpretation

• α and β measure the relative
input intensity of production of
the two inputs

• If α increases relative to β,
production uses more units of
input 1 to produce a certain
amount

• These also have interpretations
as output elasticities

• The magnitudes of α+ β also
matter later when we talk about
returns to scale 24
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Cobb-Douglas production: f(x1, x2) = Axα1 xβ2

• Unlike in the preference case,
magnitudes here matter and have
a specific interpretation

• A is roughly a measure of the scale
of production

• α and β measure the relative
production intensity of the two
goods while A scales how much
of the output good these
combine to produce

• Sort of a multiplier indicating
how advanced the technology is

• We can imagine technology
becoming more efficient, which
increases A 25
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Example: Cobb-Douglas production: f(x1, x2) = Axα1 xβ2
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Example: Cobb-Douglas production: f(x1, x2) = Axα1 xβ2
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Other cost functions



Total costs

The cost function we’ve derived is
called the total cost function, which
can be decomposed as such:

TC(q) = FC+ VC(q)

• Fixed costs FC
• The costs that don’t depend on
quantity

• “Fixed” in the short run
• Variable costs VC(q)

• The costs that do depend on
quantity

• Can be varied in the short run 29
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Average costs

AC(q) = c(q)
q

• Cost function divided by quantity:
the cost per unit of output

• Average cost = average fixed costs
+ average variable costs
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Marginal costs

MC(q) =
dTC(q)
dq

=
dFC(q)
dq +

dVC(q)
dq

= 0+ dVC(q)
dq

=
dVC(q)
dq

• Since fixed costs don’t depend on
quantity, fixed costs do not affect
marginal costs

• Marginal costs are the first
derivative of the variable cost 31
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Relation between average costs and marginal costs

• For q such that MC(q) < AC(q),
then average costs are decreasing

• For q such that MC(q) > AC(q),
then average costs are increasing

• For q such that MC(q)− AC(q),
then average costs are at an
inflection point
(minimum/maximum)

• Some more in Chapter 22 but
cannot fit into this recitation
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Next week: The Producer’s Problem II: The Supply Decision

max(Profit) = max(Revenue− Cost) = max
q

{p(q)q− c(q)}

Step 2: The supply decision

max
q
p(q)q− c(q)

Given
• Consumer inverse demand function
q(p)

• Producer cost function c(q)

Derive:
• Marginal revenue MR(q)
• Marginal cost MC(q)
• Profit-maximizing supply decision
q∗ ≥ 0

• Maximal profit π∗ = p(q∗)q∗ − c(q∗)
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